%

Lua 5.1 Hasznalati utmutato

készitette Roberto lerusalimschy, Luiz Henrique de Figueiredo, Waldemar Celes

Copyright © 2006 Lua.org, PUC-Rio. Minden jog fenntartva.

1 - Bevezetés

A Lua egy eljarasokon alapuld, kiegészité programnyelv, adat leirasi lehetéségekkel
kibévitve. Magasfoku tamogatast nyujt az objektum-orientalt, funkcionalis vagy adat-
vezérelt programozashoz is. A Lua nyelvet egy erés, 'nehézsulyd’ scriptnyelvnek
szantak, amelyet barmilyen program hasznéalhat. A Lua fliggvénykdnyvtarként lett
létrehozva, és tiszta C nyelven lett irva (azaz az ANSI C és C++ nyelvek altalanos
részhalmazaként).

Mivel ez egy kiegészit6 nyelv, igy nem létezik "f6" program sem: csak a f6 kliensbe
beagyazva mikddik, amelyet beagyazo programnak vagy egyszerien hostnak
neveznek. Ez a host program megadhatja egyes fliggvényeknek, hogy hajtsak végre
a megadott Lua kddot, Lua valtozékat irhat és olvashat, valamint C funkciokat
regisztralhat, amelyeket késébb a Lua kéd meghivhat. A C fliiggvények hasznalataval
a Lua kiterjeszthetd, és igy kiildnbdz6 problémak széles tartomanyaval
megbirkdzhat, igy olyan személyre szabott programozasi nyelvek készithetbek,
amelyek ugyanazt a szintaktikai keretrendszert hasznaljak. A Lua csomag tartalmaz
egy host programot, amelynek 1ua a neve. Ez a Lua eljaraskdnyvtarat hasznalva
biztositja a teljes, egyedilallé Lua értelmezét.

A Lua egy ingyenes program, amely nem vallal garanciat semmilyen esetre, ahogy
az a licencében is szerepel. Ez a leirds a Lua hivatalos weblapjan is
megtekinthetd: www.1ua.org.

Mint megannyi masik leiras, ez a dokumentum is hidnyos néhany helyen. A Lua
kialakitasarol szo6l6 férum szintén megtalalhaté a Lua weboldalan. Részletesebb
programozasi ismeretek elsajatitasahoz nyujt segitséget Robert kényve, a
Programming in Lua.

2 - A nyelv

Ez a rész a szintaktikai és szemantikai részét irja le a Lua nyelvnek. Mas széval, ez a
rész hatarozza meg, mely szimbélumok elfogadottak és érvényesek, ezek hogyan
kombinalhatdak, és az egyes kombinaciok mit jelentenek.

A nyelv konstruktorai ('létrehozéi') a kiterjesztett BNF jelrendszer segitéségével
lesznek feltlintetve, ahol az {a} kifejezés értéke 0 vagy tébb a, és az [a] kifejezés
jelentése, hogy a opciondlis, elhagyhat6. A nem-kulcsszavak nem-kulcsszé
formaban, a kulcsszavak kulcsszé formaban, a tébbi kifejezés pedig "=" formaban
szerepel. A Lua teljes szintaktikdja a leiras végén talalhaté.

2.1 - Lexikalis szabalyok

A Lua nyelvben a nevek (mas néven azonositok) barmilyen betlikbdl, szamokbdl és
alahizas karakterbdl allé karakterlanc lehetnek, azonban nem kezdédhetnek
szamjeggyel. Ez megegyezik a legtdbb nyelv azonositéinak szabalyaival. (A betl
meghatarozasa a helyi bedllitdsokon mulik: barmely karakter, amely a beéllitasok
szerint alfabetikusnak minéstil, hasznalhatd azonositoként.) Az azonositdk a valtozok
megnevezésére és a tbmb mezék azonositasara hasznalhatdak.

A kovetkezd kulcsszavak foglaltak, és nem hasznélhatdéak azonositokként:

and break do else elseif

end false for function if

in local nil not or

repeat return then true until while

A Lua nyelv nem tesz klldnbséget kis- és nagybetiik kdzétt, igy amig az and foglalt
sz0, az And és az AND két kiulénb6z6, érvényes név. Megallapodas, hogy azok a
nevek, amelyek alahuzassal kezdédnek, és nagybetiikkel folytatodnak (mint pl. a
_VERSION) a Lua szamara fenntartott belsé globalis valtozék.

A kovetkezd karakterlancok mas vezérjelet fejeznek ki:

+ - *x /5 "~ 4
== ~= <= >= <
() £y 0]

14 . 14

> =

A literalis (sz6 szerinti) karakterlancok a sima és dupla idézéjelekkel vannak
hatarolva, és a kdvetkez6 C-alapu vezérldsorozatokat tartalmazhatjak: "\a' (csengé),
"\b' (torlés), "\t' (lapemelés), "\r' (kocsivissza), "\t' (vizszintes tabulator), "\+v'
(flggéleges tabulator), "\\' (backslash), "\"' (idéz6jel [dupla idéz&jel]), valamint "\ "
(aposztrof [szimpla idézdjel]). (Ezeken felll, egy backslash utan elhelyezett Ujsor egy
Ujsort eredményez a karakterlancban.) Egy karakter megadhaté a numerikus
értékével, \ddd formaban is, ahol ddd maximum harom szamjegyet jelenthet (ha a
numerikus blokkot egy szam kdveti, akkor pontosan harom szamjegyet kell
hasznalni). A karakterlancok a Lua nyelvben tartalmazhatnak barmilyen 8-bites
értéket, beleértve a beagyazott nullat is, amely "\o' formaban adhatdé meg.

A literalis karakterlancokban, melyeket dupla (v. szimpla) idézéjelek zarnak le, a
dupla (szimpla) idéz6éjeleket, az Gjsor karaktert, a backslash-t, vagy a beagyazott

nullat vezérlékarakterrel kell ellatni. A tébbi karakter kézvetlendl beilleszthetd a
karakterlancba. (Néhany vezérl6karakter problémat okozhat a fajlrendszer szamara,
de a Lua-nak nincs problémaja ezekkel).

A literalis karakterlancok hosszu formaban is meghatarozhatdak a hosszu zarojelek
segitségével. Az n szintd nyité hosszu zardjel megadasakor a nyité szégletes zarojel
utan n egyforma jel kbvetkezik, melyet még egy nyit6é szdgletes zardjel kbvet. Tehat a
0. szintl nyité hosszu zardjel kezd6 formuldja [[, az els6 szintié [=[, és igy tovabb.
A zard hosszu zardjel megadasa hasonlé modon térténik, példaul, a negyedik szinti
zar6 hosszu zarojel formulaja]J====1]. A hosszu karakterlanc barmely szintl nyitd
hosszu zaréjellel kezdédik, és az ugyanolyan szintli zaré hosszu zarojelig tart. A
literalis karakterlancok szégletes zardjelezett formaja tébb sorban is szerepelhet,
ebben az esetben nem dolgozza fel az esetleges vezérlbkaraktereket, és figyelmen
kivil hagyja a kdztes, barmilyen szintli hosszu zarojeleket. Barmit tartalmazhatnak,
kivéve a megfeleld szintli zaré hosszu zardjelet.

Kényelmi okokbdl, abban az esetben, ha a nyitd6 hosszu zardjelet kdzvetlenil egy
Ujsor kdvet, az ujsor karakter nem kerUl bele a karakterlancba. Példaul, egy ASCII-t
hasznald rendszer (ahol 'a' kddja 97, az Ujsor koddja 10, és '1' kédja 49), a kdvetkezd
6t literalis karakterlanc ugyanazt hatarozza meg:

'alo\nl23""
"alo\nl23\""
'"\9710\10\04923""
[[alo

[\
([T | I [T
I =

A numerikus konstansok leirhatdak opciondlis decimalis résszel és egy opcionalis
decimalis hatvanykitevével. A Lua szintén elfogadja a hexadecimalis konstansokat,
ez esetben ezek 0x elétaggal kezdédnek. Ervényes numerikus konstansoknak
tekinthetéek a kdvetkezb kifejezések:

3 3.0 3.1416 314.16e-2 0.31416E1 Oxff 0x56

A megjegyzes (komment) dupla gondolatjellel (--) kezdédik, barhol a karakterlancon
kivil. Ha a -- jelek utan kévetkez8 széveg nem nyité hosszu zardjellel kezdddik,
akkor rdvid megjegyzésrol beszéllink, ellenkezd esetben ez egy hosszl megjegyzés,
amely az azonos szint(i zar6 hosszu zardjelig tart. A hosszu megjegyzések
legtdbbszér egy kédrészlet ideiglenes kiiktatasara szolgalnak.

2.2 - Ertékek és tipusok

A Lua egy dinamikus tipusu nyelv. Ez azt jelenti, hogy a valtozéknak nincsenek
tipusaik, csak az értékeknek. A nyelvben nincsenek tipus definiciok sem, minden
érték maganak alakitja ki a tipusat.

A nyelvben minden érték els6 osztalyu érték. Ez azt jelenti, hogy az értékek
valtozékban tarolhatéak, flggvények paramétereiként hasznalhatdéak és visszatérési
értékek is lehetnek.

Nyolc tipus létezik a Lua nyelvben: nil, boolean, number, string, function, userdata,
thread, és table. Nil a tipusa a nil értéknek, amelynek f6 tulajdonsaga, hogy
kGlénbdzik az 6sszes tobbi értektdl; altaldban a hasznalhatd érték hianyat jelenti. A
boolean tipusnak két értéke lehet: false (hamis) és true (igaz). Mind a nil, mind a
false hamissa tesz egy feltételt; minden egyéb érték igazza. A number tipus valodi
(dupla-pontossagu lebegépontos) szamokat jeldl. (Nem nehéz olyan Lua értelmez6t
késziteni, amely mas tipusu szamokat hasznal, példaul szimpla pontossagu
lebegdbpontost vagy hosszu egész szamost; lasd a 1uacont.h fajlt.) A string tipus egy
karaktertémbot hoz l1étre. A Lua 8-bit alapu: a karakterlancok barmilyen 8-bites
karaktert tartalmazhatnak, beleértve a beagyazott nullat ('\o") is (lasd §2.1).

A Lua meg tud hivni (és kezelni is tud) Lua és C nyelven irt flUggvényeket is. (lasd

§2.5.8).

Az userdata tipus végtelen szamu C adat tarolasat biztositja LUA véaltozékban. Ez a
tipus egy nyilt memériatertlet cimére hivatkozik, és nincs el6re meghatarozott
muvelete a Lua szamara, kivéve a hozzarendelést és az azonositasi tesztet.
Azonban a metatémbdk hasznalataval a programoz6 megadhat miveleteket az
userdata értékek szamara (lasd §2.8). Ezek az értékek Lua-bol nem modosithatéak
és nem is hozhatdak létre, csak a C API-n keresztil. Ez garantalja a host program
adatainak sértetlenségét.

A thread tipus segitségével fliggetlen futasi szalak hozhat6ak létre, és korutinok
valdsithatoak meg (lasd §2.11). A Lua szalak nem dsszekeverendbek az operacios-
rendszerbeli szalakkal. A nyelv minden rendszeren tamogatja a korutinok
hasznalatat, még azokon is, amelyek nem tamogatjak a szalakat.

A table tipus asszociativ tdmbot jelent, igy tehat a tdmbdk indexei (azonositéi) nem
csak szamok, hanem barmilyen mas értékek is lehetnek (kivéve a nil-t). A tdblak
heterogének is lehetnek, igy az értékek is barmilyen tipusuak lehetnek (kivéve a nil-
t) A tabla az egyetlen adatstruktira mechanizmus a nyelvben; képviselhetnek
rendezett tdmbodket, szimbdélumtarakat, halmazokat, bejegyzéseket, grafokat, fakat,
stb. Bejegyzések készitésekor a Lua a mezd nevét hasznalja indexként. A nyelv
tamogatja az elérést a.name és a["name"] formaban is. A tdmbdk létrehozasanak
tbbb mddja is van a nyelvben (lasd §2.5.7).

Ahogy az indexek, ugy az értékek is barmilyen tipusuak lehetnek (kivéve a nil-t).
Bizonyos esetekben, mivel a fliggvények els6-osztalyd értékek, a tombok mezbi
tartalmazhatnak fliggvényeket is. Igy ezek a tdmbok szintén tartalmazhatnak
eljiarasokatis. (lasd §2.5.9).

A témbok, fliggvények, szalak és a (teljes) userdata értékek objektumok: a valtozok
nem tartalmazzak ezeket az értékeket, csak a hivatkozasukat. Az értékadasok, a
paraméteratadasok és a fliggvények visszatérési értékei mindig befolyasoljak
ezeknek az értékeknek a hivatkozasait; ezek a miveletek nem foglalnak magukban
semmilyen masolatot.

A flggvénykdnyvtar type fliggvényének visszatérési értéke az adott érték tipusat
leiré karakterlanc.

2.2.1 - Atalakitasok

A Lua automatikusan biztosit atalakitasi lehetéséget a karakterlanc és a szam
értékek kozott futasi idében is. Barmilyen szamtani miivelet végrehajtasakor, amely
karakterlancon hajtédna végre, a Lua az atalakitasi szabalyokat kdvetve megprobalja
a karakterlancot szamma alakitani. Forditott esetben, amikor egy szam van
hasznalatban olyan helyen, ahol karakterlancnak kellene kdvetkeznie, a szam
karakterlancca lesz alakitva, elfogadhaté formaban. A szamok karakterlancca
alakitdsahoz a string eljaraskényvtar format fliggvénye hasznalatos (lasd

string.format)

2.3 - Valtozok

A valtozdk azok a helyek, ahol az értékek tarolhatéak. A Lua nyelvben haromféle
valtozo létezik: globalis valtozék, lokalis valtozok és témb mezék.

Egy egyszerl név jelélhet globdlis vagy lokélis valtozoét is (vagy egy figgvény
szabdlyszer(paraméterét, ahol igy egy egyéni lokalis valtozét jelent):

var ::= Name
A név jelzi az azonositét, a §2.1. pontban foglaltak szerint.

A valtozdk alapértelmezés szerint globalisak, hacsak nem szandékosan lokalisként
vannak deklaralva. (lasd §2.4.7). A lokdlis valtozok lexikalis kiterjedéstiek: az adott
hataskérdn belll definialt fliggvényekben szabadon elérhetéek (lasd §2.6).

Egy valtoz6 az elsd értékadas elétt nil értékkel rendelkezik.

A szdgletes zardjelek egy tdmb indexét fejezik ki:

var ::= prefixexp [~ exp ']1°

A globalis valtozék és tomb mezdék elérésének modja megvaltoztathatd a
metatdmbok segitségével. Az indexelt « (1] valtoz6 elérése ugyanaz, mint

a gettable_event (t, i) hivas. (lasd a §2.8 fejezetben a gettable_event fliggvény
leirasat. Ez a figgvény nem definialhaté és nem elérheté a Lua nyelvbdl, itt csak
magyarazé jelleggel szerepel.)

A var.Nanme Kifejezés ugyanazt jelenti, mint a var ["Name"]:

var ::= prefixexp . Name

Minden globalis valtoz6 egy altalanos Lua témb mezéjeként jon |étre, amit kbrnyezeti
témbdbknek vagy kérnyezetek nevezink (lasd §2.9). Minden egyes flggvény sajat
hivatkozassal kapcsolédik a kérnyezethez, igy az adott fliggvényben minden globalis
valtozo erre a kérnyezeti tdmbre fog hivatkozni. Egy fliggvény a létrehozasakor

megorokli a kbrnyezetet attédl a fliggvénytdl, amely azt 1étrehozta. Egy Lua fliggvény
kérnyezeti tdmbjének lekérésére a get fenv fliggvény szolgal. Ennek
megvaltoztatdsara a setfenv hivas hasznalhaté. (A C fliggvények kérnyezetei csak a
debug flggvénytaron keresztlil médosithatdéak (lasd §5.9).)

Az x globdlis valtozé elérése ugyanaz, mint az _env.x hivas, ami szintén egyenlé a

gettable_event (_env, "x")

hivassal, ahol az _env a futé figgvény kérnyezete. (Lasd a §2.8 fejezetben

a gettable_event flggveény leirasat. Ez a fliggvény nem definidlhaté és nem hivhato
meg a Lua-bdl. Ehhez hasonldan, az _env valtozé sem definialhat6é a Lua nyelvbél, itt
csak magyarazo jelleggel szerepel.)

2.4 - Utasitasok

A Lua az utasitdsok majdnem egyezményes halmazat tamogatja, a Pascal vagy C
nyelvekhez hasonléan. Ez a halmaz tartalmazza az értékadasokat, vezérlé
strukturakat, flggvényhivasokat és valtozé deklaracidkat.

2.4.1 - Csonkok

A végrehajtas mértékegysége a Lua nyelvben a csonk. A csonk az utasitasok
egyszer(sorozata, melyek végrehajtasa sorrendben térténik. Minden utasitast
opciondlisan egy pontosvessz6 kévethet:

chunk ::= {stat [; 1}
Ures utasitas nem létezik, igy a '; ;' kifejezés érvénytelen.

A Lua a csonkot egy névtelen fliggveny testekent kezeli, melynek valtoz6 szamu
argumentuma van (lasd §2.5.9). Igy a csonk létrehozhat lokélis valtozdkat,
argumentumokat kaphat, és visszatérési értékkel is rendelkezhet.

A csonk tarolhat6 fajlban vagy a host programban karakterlancként is. Egy csonk a
veégrehajtasakor el6szoér el6-forditddik és utasitasokka alakul a virtualis gép szadmara,
majd a leforditott kddot végrehaijtja a virtualis gép értelmezéje.

A csonkok lehetnek el6-forditottak is, binaris formaban; tovabbi informaciokkal a 1uac
program szolgal. A forraskodként és leforditott programként szerepld programok
felcserélhet6éek; a Lua automatikusan észleli a fajl tipuséat és ettél fliggéen viselkedik.

2.4.2 - Blokkok

A blokk allitasok sorozatabdl all; a blokk szintaktikai felépitése ugyanaz, mint a
csonké:

block ::= chunk

Egy blokk meghatarozhaté nyilt modon is, ebben az esetben csak egy allitast
eredményez:

stat ::= do block end

A nyilt blokkok a lokalis deklaraciok hataskdrének vezérlésekor lehetnek hasznosak.
A nyilt blokkok arra is hasznalhatdéak, hogy egy masik blokkban return vagy break
utasitast helyezzlnk el (lasd §2.4.4).

2.4.3 - Ertékadas

A Lua nyelvben engedélyezett a tébbsz6rés értékadas. Ebben az esetben az
értékadas szintaktikaja a kdvetkezéképpen alakul: baloldalon szerepel a valtozok
listdja, jobboldalon pedig az értékek listaja. Az elemek mindkét oldalon vesszdvel
vannak elvalasztva:

stat ::= varlistl =" explistl
varlistl ::= var {°, wvar}
explistl ::= exp {°, exp}

A kifejezések a §2.5. pontban vannak targyalva.

Az értékadas el6tt az értékek listaja a valtozok listajahoz lesz igazitva. Ha tobb érték
van megadva a sziikségesnél, a felesleges értékek figyelmen kiviil lesznek hagyva.
Ha kevesebb érték van a szilkségesnél, az értékek listaja ki lesz bdvitve annyi nil
értékkel, amennyi sziikséges. Ha a kifejezések listaja egy fliggvényhivassal
veégz6dik, akkor ennek a hivasnak az dsszes visszatérési értéke a megadott
valtozé(k)ba kerll(nek), még az igazitas el6tt (kivéve amikor a hivas zaréjelben
szerepel; lasd §2.5).

Az értékadasi utasitas elGsz0r kiértékeli az 0sszes kifejezést, majd csak ezutan hajtja
végre az értékadast. Igy a kdvetkezd kod:

i=3
i, a[i] = i+1, 20

az a[3] mez6t 20-ra allitja anélkdl, hogy az a141 mez6 értékét mddositana, mivel i
az a[i] kifejezésben kiértékel6dott (3-nak) még azelbtt, hogy a 4-es értéket
megkapna. Hasonlban, a kévetkez6 sor:

Xy Y = Yr X
felcseréli x és y értékét.

A globdlis valtozék és tdmb mezbk értékadasanak tulajdonsagai metatdmbék
segitségével megvaltoztathatéak. Egy indexelt témb értékadasakora t(i] = val
kifejezés megegyezik a settable_event (t, i,val) Kifejezéssel. (Lasd a §2.8
fejezetben a settable_event fliggvény leirasat. Ez a fliggvény nem definialhat6 és
nem hivhaté meg a Lua-bdl, itt csak magyarazé jelleggel szerepel.)

A globalis valtozok értékadasa (x = va1) megegyezik az _env.x = val értékadassal,
amely megegyezik a

settable_event (_env, "x", val)

hivassal, ahol _env a futé fliggvény kdrnyezete. (az _env valtozé nem definialhaté a
Lua nyelvbél, itt csak magyarazo jelleggel szerepel.)

2.4.4 - Vezérl6 szerkezetek

A vezérld szerkezetek: az if, a while, és a repeat a szokasos tulajdonsagokkal
rendelkeznek és a mar ismerds szintaktikat hasznaljak:

stat ::= while exp do block end
stat ::= repeat block until exp
stat ::= if exp then block {elseif exp then block} [else block] end

A Lua nyelvben is létezik for utasitas, két hatokérben is (lasd §2.4.5).

Egy vezérl6 szerkezet feltételes kifejezése barmilyen visszatérési értékkel
rendelkezhet. Mind a false, mind a nil érték hamisnak minéstl. Minden nil-tél és
false-t6l kilbnb6z6 érték igaznak mindsil (igy tehat, barmilyen szokatlan, a 0 szam
és az Ures karakterlanc is igaznak minésiil).

A repeat—until ciklus nem ér véget az until kulcsszonal, hanem csak annak feltétele
utédn. Emiatt a feltétel felhasznalhat olyan lokalis valtozokat is, amelyek a ciklus
blokkjaban lettek deklaralva.

A return utasitas szolgal arra, hogy az egyes fliggvények és csonkok (amely csak
egy flggvénybdl all) visszatérési értékekkel rendelkezhessenek. A fliggvényeknek és
a csonkoknak lehet tdbb visszatérési értékik is, ebben az esetben a return utasitas
szintakszisa a kévetkezé:

stat ::= return [explistl]

A break utasitas egy while, repeat vagy for ciklus megszakitasara szolgal, a ciklus
uténi kdvetkezd utasitdsra ugorva:

stat ::= break
A break mindig a legbelsé ciklust szakitja meg.

A return és break utasitasok egy blokkban csak a legutolsé helyen szerepelhetnek.
Ha nagyon fontos, hogy a return vagy a break a blokk k6zepén szerepeljen, akkor
egy nyilt belsé ciklust kell hasznalni, mivel @ do return end €S @ do break end
kifejezésekben a return és break utasitasok mar az utolsé helyen szerepelnek a
(belsd) blokkjukban.

2.4.5 - For utasitas

A for utasitasnak két formuldja létezik: egy numerikus (szambeli) és egy generikus
(altalanos).

A numerikus for ciklus addig ismétli a megadott kédrészletet, amig a vezérld valtozé
végigfut egy szamtani soron. Ennek a szintaktikaja a kdvetkez6:

stat ::= for Name "=~ exp ~, exp [, exp] do block end

A block name-ig ismétlédik, amelynek kezd6 értéke az elsd exp, zard értéke a
masodik exp, |épéskdze pedig a harmadik exp. Pontosabban, a kovetkezé for
utasitas:

for var = el, e2, e3 do block end

megegyezik a kdvetkezd kéddal:

do
local _var, _limit, _step = tonumber(el), tonumber (e2), tonumber (e3)
if not (_var and _limit and _step) then error() end
while (_step>0 and _var<=_limit) or (_step<=0 and _var>=_limit) do
local var = _var
block
_var = _var + _step
end
end

A kdvetkezbket érdemes még megjegyezni:

« Mindharom vezérl6kifejezés csak egyszer kerll kiértékelésre, a ciklus kezdete
el6tt. Mindharom eredményének szamnak kell lennie.
e A _var,a_1limit, €S a_step nem létez6 valtozdk, csak magyarazo jelleggel
szerepelnek.
» Ha a harmadik kifejezés (a |épéskdz) hianyzik, 1-es Iépéskdz lesz hasznalva.
» A break utasitassal megszakithaté a for ciklus.
» A ciklusban Iétrehozott var valtozé lokalis a ciklus szamara; nem hasznélhat6
a for vége utan, vagy ha az félbeszakad. Ha sziikség van erre a valtozéra,
akkor egy masik valtozéba kell helyezni mielétt a ciklus megszakad vagy
véget ér.
A generikus for utasitas fliggvényeken hasznalhato, és iteratomak nevezik. Minden
egyes iteraciokor az iterator fliggvény lesz meghivva hogy egy Uj értéket generaljon,
igy a ciklus akkor all meg, ha ez a visszatérési érték nil. A generikus for ciklus
szintaktikaja a kdvetkez6:

stat ::= for namelist in explistl do block end
namelist ::= Name { , Name}

A kovetkez6 for utasitas:

for var_1, "7, var_n in explist do block end

megegyezik a kdvetkezé kéddal:

local _f, _s, _var = explist

while true do
local var_1, 77, var_.n = _f(_s, _var)
_var = var_1
if _var == nil then break end
block

end

end

A kovetkezbket érdemes még megjegyezni:

o Az explist csak egyszer kerll kiértékelésre. Ez eqy iterator fliggvényt, egy
allapotot és az iterator valtozohoz tartozé kezdéérteket eredményez.

e Az_r,az_s, és az _var nem létez6 valtozok, a nevek itt csak magyarazé
jelleggel szerepelnek.

» A break utasitassal megszakithaté a for ciklus.

« Aciklusban létrehozott var_i valtozé lokalis a ciklus szdmara; nem
hasznalhaté a for vége utan, vagy ha az félbeszakad. Ha szlikség van erre a
valtozéra, akkor egy masik valtozéba kell helyezni mielétt a ciklus megszakad
vagy véget ér.

2.4.6 - Fiuggvényhivas utasitasként

A lehetséges mellék-miveletek engedélyezéséhez a fliggvények utasitasként is
végrehajthatoak:

stat ::= functioncall

Ebben az esetben a visszatérési ertékek figyelmen kivil lesznek hagyva. A
flggvényhivasok részletesebben a §2.5.8 fejezetben vannak targyalva.

2.4.7 - Lokalis deklaraciok

A lokdlis valtozdk egy blokkon belll barhol deklaralhatdéak. A deklaracié kezdeti
értékadas is lehet egyben:

stat ::= local namelist ['=" explistl]

Ha értékadas is térténik, akkor annak szintaktikdja megegyezik a tébbszbros
értékadassal (lasd §2.4.3). Egyébként minden valtozé nil értékkel lesz Iétrehozva.

A csonk is egyfajta blokk (lasd §2.4.1), igy egy nyilt blokkon kivili csonkban lokalis
valtozék deklaralhatéak. Ezeknek a lokélis valtozéknak a hatokére a csonk végéig
terjed.

A lokdlis valtozdk lathatdsagi szabalyai a §2.6. részben talalhatoak.

2.5 - Kifejezések

Az alap kifejezések a Lua nyelvben a kdvetkezéek:

exp ::= prefixexp

exp ::= nil | false | true

exp ::= Number

exp ::= String

exp ::= function

exp ::= tableconstructor

exp ::= ...~

exp ::= exp binop exp

exp ::= Uunop exp

prefixexp ::= var | functioncall | ~ (" exp ")~

A szamok és a literalis karakterlancok a §2.1 fejezetben vannak leirva; a valtozék

a §2.3 fejezetben; a fliggvénydefinicidk a §2.5.9 fejezetben; a fliggvényhivasok

a §2.5.8 fejezetben; a tdbmb konstruktorok a §2.5.7 fejezetben. A vararg kifejezések,
amelyeket harom pont jeldl ('..."), csak a vararg fliggvényekben hasznalhatbéak, ezek
a §2.5.9 fejezetben vannak leirva.

A binaris operatorok szamtani miveletei jelekbdl (lasd §2.5.1), relaciéos muiveleti
jelekbél (lasd §2.5.2), logikai operatorokbdl (lasd §2.5.3), és az 6sszefiizd
operatorbdl (lasd §2.5.4) allnak. Az unaris operatorok csoportjaba tartozik az unaris
minusz (lasd §2.5.1), az unaris not (lasd §2.5.3), valamint az unaris hossz operator

(lasd §2.5.5).

Mind a flggvényhivasok, mind a vararg kifejezések tébb értéket is
eredményezhetnek. Ha a kifejezés utasitasként fut le (lasd §2.4.6) (csak
flggvényhivasoknal elérhet6), akkor a visszatérési lista nulla elemre korlatozédik,
tehat az 6sszes visszatérési érték figyelmen kivil lesz hagyva. Ha egy kifejezés egy
masik kifejezésen belll, vagy egy kifejezés-lista kbzepén szerepel, akkor a
visszatérési értékek csak egy elemre korlatozédnak, igy az elsén kivll az 6sszes
visszatérési érték figyelmen kivll lesz hagyva. Ha egy kifejezés a kifejezéslista utolsé
eleme, akkor nem hajtédik végre a korlatozas, kivéve, ha a hivas zaréjelekkel
torténik.

Kdévetkezzen néhany példa:

f() —— 0 eredményre korléatozva

g(f(), x) —— f£() 1 eredményre korlatozva

g(x, £f()) —— a g x—et és az f() fliggvény visszatérési értékeit kapja

a,b,c = £(), x —— £() 1 eredményre korlatozva (c nil lesz)

a,b = -— a kapja az elsé vararg paramétert, b kapja

—-- a masodikat (a és b is lehet nil, ha nincs megfeleld vararg

paraméter)

a,b,c =%, £f() —— f£() 2 eredményre korlatozva

a,b,c = £() -— £() 3 eredményre korlitozva

return f£() —- f£() Osszes visszatérési értéke visszatér

return ... —— Az Osszes fogadott vararg paraméter visszatér

return x,y,f() —-— visszatérési értéke x, y, és az f() fliggvény
visszatérési értékei

{f£()} —— visszatérési értéke az f () fliggvény visszatérési értékeibdl
alkotott tdmb

{...} —— visszatérési értéke a vararg paraméterekbdl alkotott tomb

{f(), nil} —— f£() 1 eredményre korlatozva

Egy zaréjelbe tett kifejezés mindig csak egy értékkel tér vissza. igy a (£ (x, v, z))
akkor is csak egy értékkel tér vissza, ha az r fliggvény egyébként tébb visszatérési

értékkel is rendelkezik. (Az (f (x,y, z)) hivds eredménye tehat az r fliggvény elsé
visszatérési értéke, vagy nil, ha nincs visszatérési érték.)

2.5.1 - Szamtani miiveleti jelek

A Lua nyelvben elérhetbek a szokasos szamtani miveleti jelek: a binaris +
(6sszeadas), - (kivonas), * (szorzas), / (osztas), s (modulo), és a ~ (hatvanyozas);
az unaris - (negacio). Ha az operandusok szamok, vagy olyan karakterlancok,
amelyek szdmma alakithatdak (lasd §2.2.1), akkor a mlveletek a szokésos
tulajdonsagokkal rendelkeznek. Hatvanyozaskor barmilyen hatvanykitevé
hasznalhaté. Példaul, az <~ (-0.5) kifejezés x négyzetgydkének negaltjat
eredményezi. A modulo muvelet definicidja a kbvetkezd:

a %$ b == a - math.floor (a/b)*b

igy ez az osztas maradékat adja eredményiil, amely a hanyadost a minusz végtelen
irdnyaba kerekiti.

2.5.2 - Relacios miiveleti jelek

A Lua nyelv relacios miveleti jelei a kdvetkezbek:

== ~= < > <= >=
Ezek az operatorok mindig false vagy true értéket eredményeznek.

Az egyenlbség (==) operator elészdr 6sszehasonlitja az operandusok tipusat. Ha az
eredmények eltéréek, az eredmény false. Egyéb esetben az operandusok értékei
kerlilnek 6sszehasonlitasra. A szamok és a karakterlancok ésszehasonlitasa a
szokvanyos modon torténik. Az objektumok (table, userdata, thread tipusok és
flggvények) a hivatkozasaik altal lesznek 6sszehasonlitva: két objektum csak akkor
tekinthetd egyenlének, ha mindketté ugyanaz az objektum. Minden alkalommal,
amikor egy Uj objektum létrején (table, userdata, thread tipus vagy fliggvény), ez az
0j objektum mindig kiilénbdzni fog az el6zéen Iétrehozott objektumoktol.

A Lua table és userdata tipusainak 6¢sszehasonlitdsa megvaltoztathaté a "eq"
metaeljaras hasznalataval (lasd §2.8).

A §2.2.1 pontban szerepl6 atalakitasi szabalyok nem vonatkoznak az egyenléségi
dsszehasonlitasra. Emiatt a "o"==0 értéke false, valaminta t[oj ésat("o"]
azonositok két kilénbdzd mezét hataroznak meg a témbben.

A ~= mivelet az egyenléség (==) tagadasa.

A rendez6 operatorok a kévetkezéképpen mikddnek: ha mindkét argumentum szam,
akként lesznek dsszehasonlitva. Ha mindkét paraméter karakterlanc, az
dsszehasonlitas a helyi bedllitasoknak megfeleléen fog lezajlani. Egyéb esetben a
Lua megprobalja meghivni az "It" vagy az "le" metaeljarast (lasd §2.8).

2.5.3 - Logikai operatorok

A logikai operatorok a Lua nyelvben az and (és), or (vagy), és a not (nem). A vezérlé
szerkezetekhez hasonldan (lasd §2.4.4) minden logikai operator a false-t és a nil-t
hamisnak, minden egyéb értéket igaznak tekint.

A not negacids operator mindig false vagy true értékkel tér vissza. Az and
konjunktiv (egyesit6) operator visszatérési értéke az elsé argumentuma, ha az false
vagy nil; egyéb esetben az and visszatérési értéke a masodik paraméter. Az or
diszjunktiv (szétvalasztd) operator visszatérési értéke az elsé argumentum, ha annak
értéke nil-t6l és false-tdl kiilénbodzik, egyébként a visszatérési értéke a masodik
argumentum. Mind az and, mind az or gyorsitott kiértékelést hasznal, azaz a
masodik operandus csak akkor kerul kiértékelésre, ha az valéban sziikséges.
Kbévetkezzen néhany példa:

10 or 20 ——> 10

10 or error() ——> 10

nll or "a" 77> "a"

nil and 10 -—> nil

false and error () —--> false
false and nil --> false
false or nil —--> nil

10 and 20 —-—> 20

(a fenti leirasban a --> jelzi az el6tte |évd kifejezés eredményét.)
2.5.4 - Osszefiizés

A karakterlancok 6sszeflizésére szolgalo operatort a Lua nyelvben két ponttal jeldlik
(".."). Ha mind a két operandus karakterlanc vagy szam, akkor azok a §2.2.1 pontban
leirt szabalyok szerint karakterlancokka lesznek atalakitva. Egyéb esetben a "concat"
metaeljaras lesz meghivva (lasd §2.8).

2.5.5 - A hossz operator

A hossz operatort az unaris # operator jeléli. Egy karakterlanc hossza az elfoglalt
bajtok szama (mivel minden karakter egy bajtnak felel meg).

A t tdbmb hosszanak értéke barmilyen n egész szam lehet, amely megfelel annak a
feltételnek, hogy t (n1 nem nil és t (n+1] nil; tovabba ha t (1] nil, n értéke nulla is
lehet. Egy altalanos témb esetén, ahol 1-t6l az adott n-ig nem nil értékek
szerepelnek, a hossz értéke pontosan n, azaz az utolsé érték indexe. Ha a témb
"lyukas" (azaz nil érték(ek) vannak nem-nil értékek kéz6tt), akkor a #t értéke
barmelyik nil értéket megel6z8 index lehet (tehat az elsé nil érték a tdmb végét
jelenti).

2.5.6 - Precedencia

A miveleti jelek precedencigja (els6sége, sorrendje) a Lua nyelvben a kévetkezd
tablazatot kdveti, az alacsonyabbt6l a magasabb prioritas felé haladva:

or
and

— (unaris)

Természetesen zarojelek hasznalataval modosithato a kifejezések sorrendje. Az
Osszefiz6 ('..") és a hatvanyozasi ('~') operatorok jobbrél asszociativak. Minden mas
binaris operator balr6l asszociativ.

2.5.7 - Tomb konstruktorok

A témb konstruktorok olyan kifejezések, amelyik tombdket hoznak Iétre. Minden
alkalommal, amikor egy konstruktor kiértékelédik, 1étrején egy témb. A konstruktorok
segitségével Ures tdbmbdk hozhatbak létre, vagy olyanok, amelyek elére
meghatarozott mezdket tartalmaznak. A konstruktorok altalanos szintakszisa a
kdvetkezd:

tableconstructor ::= “{ [fieldlist] "}~

fieldlist ::= field {fieldsep field} [fieldsep]
field ::= "[" exp "1~ =" exp | Name "= exp | exp
fieldsep ::= ~, " | °;°

Minden egyes [exp1] = exp2 kifejezés egy Uj bejegyzést ad a tdmbhdz, exp1
kulccsal és exp2 értékkel. A name = exp formula ugyanazt jelenti, mint amit

a ["name"] = exp. VEQUIl, az exp mezdk megegyeznek az (i1 = exp kifejezéssel,
ahol i egy 1-t6l induld, egymast kbvetb egész szamsorozatot jelent. Mas formatuma
mez6k nem befolyasoljdk ezt a szamolast. Példaul:

a={ [£EM))] =g; "x", "y"; x =1, £(x), [30] = 23; 45}

ugyanaz, mint a kdvetkezé kod:

do
local t
t[f(1)] =g
t[l] = "x" —-- 1st exp
t[2] = "y" —-— 2nd exp
t.x =1 —— t["x"] =1
t[3] = £(x) —— 3rd exp
t[30] = 23
t[4] = 45 —— 4th exp
a ==t
end

{1

Ha a lista utols6 mezdjének exp formuldja van és a kifejezés egy flggvényhivas vagy
vararg kifejezés, akkor ezeknek a kifejezéseknek a visszatérési értékei folyamatosan
beéplilnek ebbe a listaba (lasd §2.5.8). Ez megel6zhetb azzal, ha a figgvényhivast
(vagy a vararg kifejezést) zarojelbe téve hivjuk meg (lasd §2.5).

A mezélistdnak lehet egy opcionalis elvalasztéja, kényelmi funkcioként a gép altal
generalt kéd szamara.

2.5.8 - Fiiggvényhivasok
A flggvényhivasnak a Lua nyelvben a kbvetkez6 a szintaktikaja:

functioncall ::= prefixexp args
A figgvény hivasakor el6szér az el6tag (prefixexp) és az argumentumok lesznek
kiértékelve. Ha az el6tag tipusa function, akkor a fliggvény a megadott
argumentumokkal meghivodik. Ellenkezd esetben az el6étag "call" metaeljarasa lesz

meghivva, melynek elsé paramétere az elétag értéke, amelyet az eredeti
argumentumok kévetnek (lasd §2.8).

A kovetkez6 formula:

functioncall ::= prefixexp "~ : Name args

eljarasok meghivaséara hasznalhaté. A v:name (args) hivas ugyanaz, mint
a v.name (v, args), azzal a kilébnbséggel, hogy a v csak egyszer lesz kiértékelve.

Az argumentumok szintaktikaja a kdvetkezd:

args ::= "~ (~ [explistl] ")~
args ::= tableconstructor
args ::= String

A hivas el6tt minden argumentum kifejezés kiértékelédik. Az £ rie1ds} formatuma
hivas megfelel az ¢ ((rie1ds}) kifejezésnek; ebben az esetben az argumentumok
Iistéja egy l:lj tdmbnek felel meg. Az £'string’ (vagy f"string" Vagy f[[string]])
formatumu hivas megegyezik az r ('string') hivassal; ebben az esetben az
argumentumok listaja egy literalis karakterlancnak felel meg.

Egyetlen kivétel a haromféle Lua szintakszis al6l, hogy nem hasznalhaté ujsor
karakter a ' (' jel el6tt flggvényhivasndl. Ez a korlatozas megel6z néhany félreértést a
nyelvben. A kdvetkez6 kodrészlet

a = £
(g9) .x(a)

a Lua szamara egyetlen utasitast fog jelenteni, a = £(g) .x(a). Igy, ha két
utasitasként szeretnénk a fenti kddot felhasznalni, pontosvesszdvel kell elvalasztani
Oket. Ha az r fliggvényt kézvetlenll szeretnénk meghivni, el kell tavolitani az Gjsor
karaktert a (g) eldl.

A return flggvényhivas formatum neve véghivas. A Lua tékéletes veéghivast

(vagy tokéletes végujrahivast) valésit meg: egy véghivasban a hivott fliggvény ujra
felhasznalja a hivé fliggvény verem bemenetét. Emiatt nincs korlatozas a program
altal végrehajthatd, egymasba agyazott véghivasok szamat illetéen. Azonban a
véghivas minden hibakeresési informaciot torél a hivo fliggvényrél. A véghivas csak
egyéni szintakszis esetén fordulhat el6, ahol a return argumentuma csak egy
flggvényhivas; ez a szintakszis arra készteti a hivo fliggvényt, hogy a hivott

flggvény visszatérési értekeivel térjen vissza. A kdvetkezd peldaban véghivasok
szerepelnek:

return (f(x)) —— az eredmények szama l-re korlatozva

return 2 * f(x)

return x, f(x) —-—- tovabbi eredmények

f(x); return -- a visszatérési értékek figyelmen kiviil hagyva
return x or f(x) —-—- az eredmények szama l-re korlatozva

2.5.9 - Fuggvénydefiniciok
A fuggvénydefinicié szintakszisa a kdvetkez:

function ::= function funcbody
funcbody ::= " (° [parlistl] ") block end

A kovetkez6 szintakszis leegyszerisiti a fliggvénydefiniciokat:

stat ::= function funcname funcbody
stat ::= local function Name funcbody
funcname ::= Name { . Name} [: Name]

A kovetkezd kifejezés:
function £ () body end
a kbévetkez6képpen fordithato:
f = function () body end
A kovetkez6 kifejezés:
function t.a.b.c.f () body end

pedig a kbvetkezéképpen:

t.a.b.c.f = function () body end

A kovetkez6 kifejezés

local function f () body end

megfelel a kbévetkezének:

local f; £ = function () body end

és nem pedig ennek:

local £ = function () body end

(Ez a kllénbség csak akkor szamit, ha a fliggvénytest t-re hivatkozik.)

A flggvénydefinicié egy végrehajthato kifejezés, amely értékének tipusa function.
Amikor a Lua el6-fordit egy csonkot, akkor annak az Gsszes fliggvényteste
el6forditasra kerul. gy, amikor a Lua végrehajt egy flggvénydefiniciét, a fliggvény
véglegesitédik (vagy lezarodik). Ez a fuggvenyhivatkozas (vagy zarlat) a kifejezés
végleges értéke lesz. Azonos fuggvények kildnbdzd hivatkozasai kilénbdzd kilsé
lokalis valtozékat is elérhetnek, valamint kiildnbdz6 kérnyezeti tdmbjeik is lehetnek.

A paraméterek lokélis valtozékként viselkednek, amelyek az argumentum értékeivel
jéonnek létre:

parlistl ::= namelist [, ~...71 |

Egy fliggvény meghivasakor az argumentumok listaja a paraméterek listajanak
szamahoz igazodik, kivéve ha a fliggvény variadikus vagy vararg fuggvény, amelyet
a paraméterlista végén harom pont jeldl ('. . ."). A vararg figgvény nem korlatozza az
argumentumok listajat, éppen ellenkezdleg, 6sszegyljti az 6sszes extra
argumentumot €s a harom pont formaban leirt vararg kifejezésen keresztll a
flggvényhez rendeli ezeket. Ennek a kifejezésnek az értéke az aktualis extra
argumentumok listaja, a tébb visszatérési értékkel rendelkezé fliggvényhez
hasonléan. Ha a vararg kifejezés egy masik kifejezésen belll szerepel, vagy a
kifejezések kbézben, akkor a visszatérési lista egy elemre korlatozddik. Ha a kifejezés
a lista utolsé eleme, akkor nem lesz korlatozas végrehaijtva (kivéve ha a hivas
zardjelbe téve torténik).

Példaként itt szerepel néhany ilyen definicio:

function f(a, b) end
function g(a, b, ...) end
function r() return 1,2,3 end

Ezek utan a kévetkezd argumentumok hozzarendelése a paraméterekhez és a
vararg kifejezéshez a kdvetkezbéket eredményezi:

PARAMETEREK HIVASA

f(3) a=3, b=nil

£(3, 4) a=3, b=4

£(3, 4, 5) a=3, b=4

f(r(), 10) a=1, b=10

f(r()) a=1, b=2

g(3) a=3, b=nil, ... —--> (semmi)
g(3, 4) a=3, b=4, . ——> (semmi)
g(3, 4, 5, 8) a=3, b=4, ... ——> 5 8
g(5, r()) a=5, b=1, ... ——> 2 3

Az eredmények a return utasitas hasznéalataval tértek vissza (lasd §2.4.4). Ha a
vezérlés ugy éri el a fliggveény végeét, hogy kézben nem talal return utasitast, akkor a
flggvénynek nincs visszatérési értéke.

A kettéspont jellel eljarasok hatarozhatéak meg, ebben az esetben a figgvénynek
van egy implicit extra paramétere, a se1t. Igy a kdvetkezd implicit utasitas

function t.a.b.c:f (params) body end

megfelel a kbvetkezének:
t.a.b.c.f = function (self, params) body end
2.6 - Lathatosagi szabalyok
A Lua egy lexikalis hatokord nyelv. A valtozék hatokdre a deklaracidk utani elsé

utasitassal kezd6dik, és a deklaraciét tartalmazo legbelsé blokk végéig tart.
Kdévetkezzen egy példa:

x = 10 —— globdlis valtozd
do -- Uj blokk
local x = x —— aj 'x', értéke 10
print (x) —-—> 10
x = x+1
do -- Gjabb blokk
local x = x+1 —-—- egy uUjabb 'x'
print (x) --> 12
end
print (x) --> 11
end
print (x) —--> 10 (a globalis)

Jegyezzik meg, hogy a 1ocal x = x tipusu deklaracidk esetén az Uj x még nem lesz
deklaralva ebben a hatdékdrben, és igy a masodik x a kiilsé valtozéra hivatkozik.

A lexikalis lathatdésagi szabalyok miatt a lokdlis valtozdkat az 6ket deklarald
flggvények szabadon elérhetik. Egy belsé fliggvény altal hasznalt lokalis valtoz6
neve upvalue (felsé érték), vagy kdilsé lokalis valtozd, a belsé fliggvényen bellil.

Ne felejtsiik, hogy a local utasitas minden egyes végrehajtasakor Uj lokalis valtozék
jonnek létre. Nézzik a kdvetkezd példat:

a = {}
local x = 20
for 1=1,10 do
local y =0
al[i] = function () y=y+1l; return x+y end
end

A ciklus tizszer hajtodik végre (azaz, tiz alkalommal fut le a névtelen fliggvény).
Minden egyes Iépés egy kiildnbdzd v valtoz6t hasznal, mig az x minden Iépésben
ugyanaz lesz.

2.7 - Hibakezelés

Mivel a Lua egy beagyazott kiterjesztett nyelv, minden Lua mivelet a host program C
kodjabdl indul, amely meghivja a Lua eljaraskdnyvtar egyik fliggvényét (lasd
1ua_pcall). Amikor a Lua hibat észlel a forditas vagy a futtatas kbzben, a vezérlés
visszatér a C-hez, ami megteheti a szilkséges intézkedéseket (példaul kiirja a
hibaltizenetet).

A Lua kéd kdzvetlenil is generalhat hibat az error fliggvény meghivasaval. Ha a
hibakat a Lua-n belll szeretnénk lekezelni, hasznaljuk a pca11 fliggvényt.

2.8 - Metatombok

A Lua-ban minden értéknek lehet metatémbje. Ez a metatémb egy atlagos Lua tdmb,
amely megvaltoztatja az eredeti érték viselkedését egyes meghatarozott miveletek
kézben. A metatdmb megfeleld mezbinek beallitdsaval egyes miiveletek j6 néhany
tulajdonsaga megvaltoztathaté. Példaul amikor egy 6sszeadas hajtédik végre egy
nem szam tipusu értéken, a Lua ellenérzi a valtozé metatdémbjének "__add" mezdjét.
Ha a Lua taldl ilyet, akkor meghivja ezt a fliggvényt, hogy hajtsa végre az
Osszeadast.

A metatdmbdk kulcsait eseménynek, az értékeit metaeljarasnak nevezzik. Az el6zé
példaban az esemény az "add", a metaeljaras pedig a fliggvény, amely végrehajtja
az 6sszeadast.

A getmetatable fliggvény segitségével a metatdbmbdk barmikor megtekinthetéek.

A setmetatable fliggvény hasznalataval a metatémbdk lecserélhetéek. Mas tipusok
metatdmjbei nem megvaltoztathatdéak a Lua-bdl (kivéve a debug eljaraskdnyvtarbol);
erre a C API-t kell hasznalni.

A tébmbdknek és az userdata tipusoknak egyéni metatémbjeik vannak (noha tébb
tdmb és userdata is osztozhat ugyanazon a metatémbén); az 6sszes tébbi ertéknek
tipusonként csak egy metatémbje lehet. Igy csak egy metatémbje lehet az dsszes
karakterlancnak, egy az 6sszes szamnak, stb.

Egy metatémb befolyasolhatja egy objektum viselkedését a szamtani miveletek, a
rendez® 6sszehasonlitasok, az dsszeflizések, a hossz operator hasznalata és az
indexelés kézben. Egy metatémb azt is meghatarozhatja, hogy egy figgvény
lefusson, amikor a szemétgy(ijté algoritmus lefut egy userdata tipuson. A Lua
ezekhez a milveletekhez egy specialis kulcsot rendel, amit eseménynek neveziink.
Amikor a Lua végrehajt egy ilyen miveletet egy értéken, ellenérzi, hogy az érték
metatdémbjében szerepel -e a megfelel6 esemény. Ha igen, akkor a kulcshoz rendelt
érték (a metaeljaras) szabja meg, hogy a Lua hogyan hajtsa végre a miveletet.

A metatémbdk a lenti listdban szerepl6 miveleteket tudjak befolyasolni. Minden
miveletet a megfeleld név azonosit. A miiveletekhez tartoz6 kulcs egy kett6s
alahuzassal (') kezd6dé karakterlanc; példaul az "add" (6sszeadas) miivelethez az
"__add" kulcs tartozik. Ezeknek a miiveleteknek jelentéstartalma jobban
értelmezhetdé egy Lua flggvényen keresztil, amelyik megadja az értelmezének a
muvelet végrehajtasanak menetét.

Az itt szerepl6 Lua kodrészletek csak illusztracidk; a valédi viselkedés az
értelmezében bonyolultabb kddokkal lett definidlva és az sokkal hatdsosabb mint ez
a szimulacié. Minden, ebben a leirdsban szerepl6 fliggvény (rawget, tonumber, stb.)
részletesen le van irva az §5.1 fejezetben. Egy adott objektum metaeljarasanak
lekérésére a kdvetkezb kifejezés hasznalhaté:

metatable (obj) [event]

Amely igy olvasandé:

rawget (getmetatable (obj) or {}, event)

Tehat a metaeljarasok lekérése nem hiv meg masik metaeljarast, és a metatémb
nélklli objektumok elérése sem lesz sikertelen (az eredmény egyszer(ien nil lesz).

e "add": a + mGvelet.

Az aldbb szerepl6 getbinhandler fllggvény hatdrozza meg, hogy a Lua
hogyan valasztja ki a binaris miivelet kezel6jét. El6sz6r a Lua megvizsgalja az
elsd operandust. Ha ennek tipusa nem hataroz meg kezel6ét a miivelethez,
akkor a Lua a masodik operandust vizsgalja meg.

function getbinhandler (opl, op2, event)
return metatable (opl) [event] or metatable (op2) [event]
end

Ennek a flggvénynek a hasznéalataval az op1 + op2 mivelet viselkedése a
kdvetkezb lesz:

function add_event (opl, op2)
local ol, 02 = tonumber (opl), tonumber (op2)
if ol and 02 then —-- mindkét operandus szam?
return ol + 02 —-— a '"+' itt egyszerl Osszeadadst jelent
else —-- legaldbb az egyik operandus nem szam
local h = getbinhandler (opl, op2, "__add")
if h then
-— a kezeld meghividsa mindkét operandushoz
return h(opl, op2)
else —— nincs elérhetd kezeld: alapértelmezett viselkedés
error(777)
end
end
end

e "sub":a - mivelet. A viselkedése hasonlé az "add" (6sszeadas) miivelethez.

o "mul": a » mivelet. A viselkedése hasonlé az "add" (6sszeadas) miivelethez.

o "div": a / mlvelet. A viselkedése hasonl6 az "add" (6sszeadas) mivelethez.

e "mod": a s mivelet. A viselkedése hasonl6 az "add" (6sszeadas) mivelethez,
amely megfelel az o1 - f1oor (01/02) *o2 primitiv mlveletnek.

e "pow": az ~ (exponencialitds) mivelet. A viselkedése hasonlé az "add"
(6sszeadas) mivelethez, amely megfelel a pow (2 C math
programkdnyvtarabdl) primitiv miveletnek.

e "unm": az unaris - mavelet.

function unm_event (op)
local o = tonumber (op)
if o then -- az operandus szam?
return -o —— '-' a primitiv 'unm'
else —-- az operandus nem szam.
—— kezeld keresése az operandushoz

local h = metatable(op).__unm

if h then
—-— kezeld meghivédsa az operandussal
return h(op)

else ——- nincs elérhetd kezeld: alapértelmezett viselkedés
error (777)

end

end

end

"concat": a .. (6sszeflizés) mivelet.

function concat_event (opl, op2)

if (type(opl) == "string" or type(opl) == "number") and
(type (op2) == "string" or type(op2) == "number") then
return opl .. op2 ——- primitiv karakterldnc-Osszeflizés
else
local h = getbinhandler (opl, op2, "__concat")
if h then
return h(opl, op2)
else
error(777)
end
end

end

"len": a #+ mlvelet.

function len_event (op)

if type(op) == "string" then

return strlen(op) —- primitiv karakterldnc hossz
elseif type(op) == "table" then

return #op ——- primitiv tdmb hossz
else

local h = metatable(op).__len

if h then

—-— kezeld meghivédsa az operandussal
return h(op)
else ——- nincs elérhetd kezeld: alapértelmezett viselkedés
error (777)
end
end
end

A tdmb hosszanak bévebb leirdsa a §2.5.5 fejezetben talalhato.

"eq'": az == milvelet. A getcomphandler fliggvény hatarozza meg, hogy
valasszon a Lua az 6sszehasonlitasi operatorokhoz metaeljarast. A
metaeljaras csak akkor hasznalhatd, ha mindkét 6sszehasonlitand6
objektumnak azonos a tipusa, valamint ugyanazzal a metaeljarassal
rendelkeznek a kivalasztott mivelethez.

function getcomphandler (opl, op2, event)
if type(opl) ~= type(op2) then return nil end
local mml = metatable (opl) [event]
local mm2 metatable (op2) [event]
if mml == mm2 then return mml else return nil end

end

Az "eq" esemény definialasa a kévetkezd:

function eg_event (opl, op2)

if type(opl) ~= type(op2) then —-- kiilénbdzd tipustak?
return false —-- kiilonbdzdé objektumok

end

if opl == op2 then —- primitiv egyenld&ség?
return true —-- az objektumok ugyanazok

end

-— metaeljadrds keresése

local h = getcomphandler (opl, op2, "__eq")
if h then
return h(opl, op2)
else
return false
end
end
Az a ~= b kifejezés ugyanaz, mint not (a == b).
"It": a < mivelet.
function lt_event (opl, op2)
if type(opl) == "number" and type (op2) == "number" then
return opl < op2 ——- szambeli Osszehasonlités
elseif type(opl) == "string" and type(op2) == "string" then
return opl < op2 —- sorfolytonos Osszehasonlités
else
local h = getcomphandler (opl, op2, "__1t")
if h then
return h(opl, op2)
else
error (" 77);
end
end
end
Az a > p kifejezés ugyanaz, mintap < a.
"le": a <= mlvelet.
function le_event (opl, op2)
if type(opl) == "number" and type(op2) == "number" then
return opl <= op2 —- szédmbeli Osszehasonlitas
elseif type(opl) == "string" and type(op2) == "string" then
return opl <= op2 -- sorfolytonos Osszehasonlités
else
local h = getcomphandler (opl, op2, "__le")
if h then
return h(opl, op2)
else
h = getcomphandler (opl, op2, "__1t")
if h then
return not h(op2, opl)
else

error(°77);

end
end
end
end

Az a2 >= b kifejezés ugyanaz, mintab <= a. Megjegyzés: a "le" metaeljaras
hianyaban a Lua megprébalja az "It" metaeljarast, azzal a feltétellel, hogy az a
<= b kifejezés ugyanaz, minta not (b < a).

e "index": A table[key] formatumu tdmbelérés.

function gettable_event (table, key)
local h
if type(table) == "table" then
local v = rawget (table, key)
if v ~= nil then return v end
h = metatable (table)._ index
if h == nil then return nil end
else
h = metatable (table)._ index
if h == nil then
error("77);
end
end
if type(h) == "function" then
return h(table, key) —-- kezeld hivasa
else return hlkey] -- vagy a mivelet megismétlése
end
end

e "newindex": A table[key] = value formatumu tdmbmezd értékadas.

function settable_event (table, key, value)
local h
if type(table) == "table" then
local v = rawget (table, key)
if v ~= nil then rawset (table, key, value); return end
h = metatable (table)._ newindex
if h == nil then rawset (table, key, value); return end
else
h = metatable (table)._ newindex
if h == nil then
error (" 77);
end
end
if type(h) == "function" then
return h(table, key,value) —-- kezeld hivésa
else hlkey] = value -- vagy a mivelet megismétlése
end
end

« "call": akkor hajtédik végre, amikor a lua meghiv egy értéket.

function function_event (func, ...)
if type(func) == "function" then
return func(...) —— primitiv hivés
else
local h = metatable(func)._ _call

if h then
return h (func, ...)
else
error(777)
end
end
end

2.9 - Kornyezetek

A thread, function és userdata tipusu objektumok a metatdmbdk mellett rendelkeznek
még egy hozzajuk rendelt tdmbbel, amit a kérnyezetiiknek neveziink. A
metatdmboékhdz hasonldéan a kérnyezetek is atlagos Lua tdmbdk, valamint tébb
objektum is osztozhat ugyanazon a kérnyezeten.

A userdata tipushoz rendelt kérnyezeteknek nincs jelentésége a Lua szamara. Ez
csak egy kényelmi funkcié a programozék szamara, hogy egy tdmbdét egy userdata
tipushoz tarsitsanak.

A szélakhoz rendelt kdrnyezetek neve globalis kérnyezet. Ezek az alapértelmezett
kdrnyezetek a szl altal I1étrehozott tovabbi szélak és nem-bedgyazott fliggvények
szdmara (a 1oadfile, loadstring vagy load hivasokon keresztil), valamint a C kéd
altal kbzvetlendl is elérhetéek (lasd §3.3).

A C fuggvenyekhez tarsitott kdrnyezetek a C kdédbdl kdzvetlendl elérhetéek (lasd
3.3). Ezek az alapértelmezett kdrnyezetei a fliggvény altal Iétrehozott tovabbi C
flggvényeknek.

A Lua fliggvényekhez tarsitott kbrnyezetek arra hasznalatosak, hogy a fliggvényben
felhasznalt globalis valtozdk elérése feloldhato legyen (lasd §2.3). Ezek az
alapértelmezett kbrnyezetei a fliggvény altal 1étrehozott tovabbi Lua fliggvényeknek.

Egy Lua flggvény vagy egy futé szal kérnyezete a set fenv hivassal
megvaltoztathato, illetve a get fenv hivassal lekérheté. A tdbbi objektum
kdérnyezetének médositasahoz (userdata, C flggvény, mas szalak) a C API-t kell
hasznalni.

2.10 - Szemétgyiijtés

A Lua automatikus memériakezeléssel rendelkezik. Ez azt jelenti, hogy
programozonak nem kell foglalkoznia sem a meméria-lefoglalassal, sem annak
felszabaditasaval, ha az objektumra mar nincs tébbé szikség. A Lua
memdériakezelése Ugy zajlik, hogy id6rél-idére lefuttatja a szemétgyiijtét, amely
Osszegylijti az élettelen (nem hasznalt) objektumokat (tehat ezek az objektumok
tobbé nem lesznek elérhetéek a Lua-bdl). A Lua-ban minden objektumra vonatkozik
az automatikus kezelés: a tdmbdkre, a userdata tipusokra, a fliggvényekre, a
szalakra és a karakterlancokra is.

A Lua un. megjelél-és-seper gylijtést végez. Két szamot hasznal a szemétgyjté-
korok szabalyozasara: a szemétgylijté sziinetet és a szemétgylijté lIépésszorzot.

A szemétgyjté szlinet szabalyozza, hogy mekkora sziinetet tartson az egyes
szemétgyjté kordk inditasa kozott. Magasabb értékek mellett a gylijtés nem lesz
annyira erételjes. 1-nél kisebb érték esetén a gyijtéd nem var az egyes kérok inditdsa
koz6tt. 2-es értéknél a gy(ijté addig var, amig az 6sszmemoaria-hasznalat a kor
inditasa elétti érték duplaja lesz.

A lépésszorzé szabalyozza a gy(ijté relativ memoriafelszabaditasi sebességét.
Magasabb érték mellett a gyjt6é erételjesebb, de minden Iépés méretét néveli. 1-nél
kisebb érték a gy(ijtét tul lassuva teszi, és azt eredményezheti, hogy a gyijté soha
nem fejezi be a kort. Az alapértelmezett érték 2 jelenti azt, hogy a gy(ijté sebessége
kétszerese a memdria-lefoglalasnak.

Ezek a szamok megvaltoztathatéak a C kdédbdl a 1ua_gc hivassal, illetve a Lua
kodbdl a coliectgarbage hivassal. Mindketté szazalékpontot kap paraméterként (igy
a 100-as argumentum valodi értéke 1). Ezekkel a fliggvényekkel a gy(jté is
kbzvetlenll szabalyozhato (pl. megéllithat6 és ujraindithato).

2.10.1 - Szemétgyiijtési metaeljarasok

A C API hasznalataval szemétgydijtési metaeljarasok rendelhetéek a userdata tipusu
objektumokhoz (lasd §2.8). Ezek a metaeljarasok véglegesité néven is ismertek.
Ezek seqitségével a Lua szemétgyijtéje dsszehangolhatd kiilsé eréforras-kezelbkkel
is (példaul fajlok bezarasa, hal6zati vagy adatbazis kapcsolatok lezarasa, vagy a
sajat memoria felszabaditasa).

Azok a felszabaditasra jel6lt userdata tipusu objektumok, amelyeknek a
metatdmbjében szerepel a _ gc mez8, nem kerllnek egybdl térlésre, hanem a Lua
egy tdmbbe helyezi 6ket. A gy(jtékoér lefutdsa utan a Lua a kévetkez6 fliggvénnyel
egyenértékd maveletet hajt végre minden egyes témbben Iév6 userdata
objektummal:

function gc_event (udata)
local h = metatable(udata) .__gc
if h then
h (udata)
end
end

Minden egyes szemétgyjt6-kér befejezésekor a userdata objektumok véglegesitdi a
létrehozasukhoz kepest forditott sorrendben vannak meghivva, beleértve azokat is,
amelyek abban a kérben lettek dsszegydjtve. Igy tehat az elsé véglegesité
meghivasakor a hozzarendelt userdata objektum az, amelyik a programban az
utolséként lett Iétrehozva.

2.10.2 - Gyenge tombok
A gyenge témb egy olyan tdmb, amelynek elemei gyenge hivatkozasok. Ezeket a

szemétgyjté figyelmen kivil hagyja. Masképpen kifejezve, ha egy objektumhoz csak
gyenge hivatkozasok tartoznak, akkor a szemétgy(jté torli ezt az objektumot.

Egy gyenge tdmbnek lehet gyenge kulcsa, gyenge értéke, vagy mindkettd egyszerre.
A gyenge kulcsokkal rendelkezé témb esetén ezek a kulcsok térlésre kerlinek,
azonban az értékeik nem. Ha a témbben mind a kulcs, mind az érték gyenge, akkor
sem a kulcs, sem az érték nem kertil térlésre. Minden egyéb esetben, ha a kulcs
vagy az érték eltavolitasra kertl, az egész par térélve lesz a tdémbbdl. Egy tdmb
gyengeségét a metatémbjében 1év6 _ mode mezé szabalyozza. Ha a _ mode mezé
értéke egy olyan karakterlanc, amely tartalmazza a 'x' karaktert, a tomb kulcsai, ha a
'v' karaktert, akkor pedig az értékei gyengék.

Miutan egy tdmb metatémbkeént lesz hasznélva, nem tanacsos a _ mode mezé
moédositasa, kiildnben azon gyenge tdmbdk viselkedése, amelyeket ez a metatdmb
szabdlyoz, kiszamithatatlan lesz.

2.11 - Korutinok

A Lua tamogatja a korutinokat, masnéven az egyldttmikédésen alapulo tébbszalu
mikoédeést. A korutin a Lua nyelvben egy végrehajtas kilénallo szalat képviseli. A
tébb szalat tamogatd rendszerek szalaitol eltéréen a korutin csak sziinetelteti a
végrehajtast a yield fliggvény hivasaval.

Egy korutin a coroutine.create hivassal hozhaté létre, amelynek egyetlen
paramétere a korutin f6 flggvénye. A create fliggvény csak létrehozza az 0] korutint,
és visszatér a kezel6jével (egy thread tipusu objektummal), de nem inditja el annak
végrehajtasat.

A coroutine.resume fliggvény elsé hivasakor, amelynek elsé argumentuma

a coroutine.create hivasbol szarmazo szal, a korutin megkezdi a f6 figgvény elsé
soranak végrehajtasat. A f6 flggvény megkapja a coroutine.resume extra
argumentumait. A korutin az inditas utan addig fut, amig be nem fejezédik,

vagy szineteltetve nem lesz.

Egy korutin kétféle mddon fejezédhet be: normal moédon, amikor a f6 fliggvény
visszatér (explicit vagy implicit médon, az utolsé utasitas utan); és abnormalisan, egy
lekezeletlen hiba esetén. Az elsé esetben a coroutine.resume visszatérési értéke
true, plusz a korutin 6 fliggvénye altal visszatérd értékek. Hiba esetén a visszatérési
érték false plusz egy hibailzenet.

Egy korutin a coroutine.yield hivdssal sziineteltethetd. Ekkor a

megfelel coroutine.resume azonnal visszatér, még akkor is, ha a sziineteltetés egy
beagyazott fllggvényhivasbol szarmazik (tehat nem a 6 figgvényben, hanem a
féflggvénybdl kdzvetve vagy kézvetlendl hivott masik fliggvénybdl). Sziineteltetéskor
a coroutine.resume SZintén true értékkel tér vissza, plusz a coroutine.yield
argumentumaival. A korutin kdvetkez folytatasakor a végrehajtas a szlineteltetés
helyétol fontatédik, d coroutine.yield megkapja a coroutine.resume €xtra
paramétereit.

A coroutine.wrap flggvény is egy korutint hoz Iétre, hasonldéan, mint
a coroutine.create, de a visszatérési ertéke nem a korutin maga, hanem egy olyan
flggvény, amely minden hivasakor folytatja a korutint. Minden egyes argumentumot,

ami ehhez a fliggvényhez van tarsitva, megkap a coroutine.resume hivas. A
coroutine.wrap Visszatérési értéke megegyezik a coroutine.resume Visszatérési
értékével, kivéve az elsét (a boolean tllpUSL,J hlbakédot) A coroutine.resume
flggvénytél eltéréen a coroutine.wrap Nnem kezeli le a hibakat; minden hiba a
hivonak lesz tovabbitva.

Kbvetkezzen egy példa:

function foo (a)
print ("foo", a)
return coroutine.yield(2*a)

end
co = coroutine.create (function (a,b)
print ("co-body", a, b)
local r = foo(a+l)
print ("co-body", r)
local r, s = coroutine.yield(a+b, a-b)
print ("co-body", r, s)
return b, "end"
end)
print ("main", coroutine.resume(co, 1, 10))
print ("main", coroutine.resume (co, "r"))
print ("main", coroutine.resume (co, "x", "y"))
print ("main", coroutine.resume(co, "x", "y"))

Futtataskor ez a kdd a kdvetkez6 kimenetet fogja eredményezni:

co-body 1 10

foo 2

main true 4

co-body r

main true 11 -9

co-body x vy

main true 10 end

main false cannot resume dead coroutine

3 - Az Alkalmazas Programozasi
Interfész

Ez arész a Lua C API-jat targyalja, azaz a host program szamara elérheté C
flggvényeket, amelyek segitségével a host kommunikalhat a Lua-val. Minden API
flggvény és a kapcsol6do tipusok és konstansok a 1ua.h fejlécfajlban vannak
deklaralva.

Sok esetben akkor is a "fliggvény" kifejezést hasznaljuk, ha néha az az API-ban
makroutasitasként érhetd el. Minden ilyen makrdé minden egyes argumentumat csak
egyszer hasznalja fel (kivéve az elsét, amely mindig egy Lua allapot), €s igy nem haijt
végre semmilyen rejtett mellékmuveletet.

A legtdbb C eljaraskényvtarhoz hasonldéan a LUA fuggvenyek sem ellenérzik az
argumentumaik érvényességét vagy allapotat. Viszont ez a tulajdonsag

megvaltoztathatd, ha a Lua-ban a 1uaconf.n fgjlban talalhatd 1uai_apicheck makrét
tokéletes definicidval latjuk el.

3.1 - A verem

A Lua az értékek C-beli atadasahoz és atvételéhez virtualis vermet hasznal. Ebben a
veremben minden érték egy Lua értéket képvisel (nil, szam, karakterlanc, stb).

Amikor a Lua C hivast hajt végre, a hivott fliggvény egy Uj vermet kap, amely
kilénbézik mind az el6z6 vermektél, mind az aktiv C fliggvényekétél. Ez a verem
alapértelmezés szerint a C fliggvény argumentumait tartalmazza, valamint ebbe
kerlilnek azok az eredmények, amelyek visszatérési értékek lesznek (lasd
lua_CFunction)

Kényelmi okokbdl a API-ban a legtébb lekérdezd mvelet nem kdveti a pontos
veremszabdlyokat. Ehelyett indexek hasznalataval barmely elem elérhetd: a pozitiv
index egy abszolut verempoziciot jeldl (1-t6l indulva), mig a negativ index a verem
tetejétél vald tavolsagot jeldli. Pontosabban, egy n elem(verem esetén az 1-es index
jelenti az els6 elemet (azaz azt, amelyik elséként keriilt a verembe), az n index pedig
az utolsé elemet; a -1 is az utols6 elemet (tehat azt, amelyik a verem tetején van), a -
nindex pedig az elsét. Az index akkor tekinthetd érvényesnek, ha az értéke 1 és a
verem teteje kdzott fekszik (tehat ha igaz r4, hogy 1 < abs (index) < top).

3.2 - Verem méret

A Lua API-val térténé kapcsolat kbézben a programozé feleléssége az egyenletesség
biztositdsa. Azaz, a programozo feladata a veremtulcsordulas lekezelése. A
1ua_checkstack fllggvény hasznalataval névelhet6é a verem mérete.

Amikor a Lua meghivja a C-t, megbizonyosodik arrél, hogy elérheté -e legalabb
LUA_MINSTACK verempozicié. A nua_mIinsTack €rtéke 20, igy a legtdbb esetben nem
kell aggddni a verem helyek miatt, ha csak nem a kéd ciklusok haszndlataval helyez
el elemeket a veremben.

A legtobb lekérdez6 figgvény barmilyen index értékeket elfogad az elérhetd
veremmeéreten bellil, tehat akkora értékig, amekkora a 1ua_checkstack értéknek be
lett allitva. Ezeknek az indexeknek a neve az elfogadhatd indexek.
Szabalyszerlibben, az elfogadhato indexet az alabbi formaban definialhatjuk:

(index < 0 && abs(index) <= top) ||
(index > 0 && index <= stackspace)

A 0 soha nem mindsul elfogadhaté indexnek.

3.3 - Pszeudo-indexek

Ha nincs masképp feltintetve, barmely fliggvény, amely érvényes indexeket elfogad,
egyben pszeudo-indexeknek is nevezzik, ami olyan Lua értéket képvisel, ami
elérhet6 a C kdd szdmara, de nincs a veremben. A pszeudo-indexek a szal

kérnyezetek, fliggvény kbérnyezetek, a registry és a C fuggvények fels6értékei
szamara vannak fenntartva (lasd §3.4).

A szal kérnyezete (ahol a globalis valtozék vannak) mindig a LuA_GLOBALSINDEX, @
futé C flggvény kérnyezete pedig mindig a Lua_eNvIRoNINDEX pSzeudoindexnél
talalhato.

A globdlis valtozdk eléréséhez és megvaltoztatasahoz szabvanyos témbmiiveletek
hasznalatosak a kérnyezeti tombdn. Példaul, egy globalis valtozé értékének
elérésére a kdvetkezd kod hasznalhaté:

lua_getfield (L, LUA_GLOBALSINDEX, wvarname);
3.4 - C zarvanyok
Amikor egy C flggvény létrejon, néhany érték tarsithaté hozza, ami igy egy C

zarvanyt eredményez; ezek az értékek a felséértékek, és a fliggvények szamara
barmikor elérhetdek, amikor meghivédnak (lasd 1ua_pushcclosure).

Amikor egy C flggvény meghivodik, a felséértékek egy meghatarozott pszeudo-
indexen helyezkednek el. Ezeket a pszeudoindexeket a 1ua_upvalueindex makrd
hozza létre. Az elsé fliggvényhez tarsitott érték a 1ua_upvalueindex (1) poziciéban
talalhato, és igy tovabb. Barmely 1ua_upvalueindex (n) elérés esetén, ahol n
nagyobb, mint a pillanatnyi fliggvény felséértékeinek a szama, egy elfogadhaté (de
nem érvényes) indexet eredményez.

3.5 - Registry

A Lua biztosit egy registryt is, amely egy el6ére definialt ttmb, ahol a C kdd barmilyen
szUkséges Lua értéket tarolhat. Ez a tomb mindig a LuA_REGISTRYINDEX
pszeudoindex poziciéban talalhaté. Barmilyen C eljaraskényvtar tarolhat adatot
ebben a tdmbben, csak arra kell Gigyelni, hogy ne legyen névitkézés, azaz hogy mas
kulcsokat hasznaljon, mint a tdébbi eljaraskdnyvtar. Kulcsként ajanlatos az
eljaraskényvtar nevét hasznalni karakterlanc formaban, vagy egy kénny(userdata
tipust, amely a kédban a C objektum cimzése.

Az egész tipusu kulcsokat a registryben a hivatkozasi mechanizmus hasznalja,
amelyet a kisegitd eljaraskonyvtar hoz létre, igy mas célra nem hasznéalhaté.

3.6 - Hibakezelés C-ben

Belséleg a Lua a C 1ongjmp -0t hasznalja a hibakezelésre. (Kivételek is
hasznalhatdéak a C++ kédban; lasd a 1uaconf.n fajlt.) Amikor a Lua valamilyen
hibaba Utkézik (mint példaul meméria-lefoglalasi hibak, tipushibak, szintaktikai hibak
és futasi hibak), egy hibahoz ér, azaz egy hosszu ugrast hajt végre. A védett
kdrnyezet a set jmp -0t hasznalja visszaallitasi pontok Iétrehozasahoz, barmilyen hiba
a legutolsé aktiv visszaallitasi ponthoz ugrik.

Majdnem az 6sszes API fliggvény okozhat hibat, példaul egy meméaria-lefoglalasi
hiban keresztiil. A kévetkez6 fliggvények védett modban futnak (azaz futasukkor egy
védett kdrnyezetet hoznak létre), igy ezek soha nem okoznak hibat: 1ua_newstate,

lua_close,lua_load,lua_pcall,és lua_cpcall.

Egy C flggvényen szandékosan is lehet hibat okozni a 1ua_error meghivasaval.

3.7 - Fuiggvények és tipusok

A kovetkez6kben szerepelnek a C API fliggvényei és tipusai, ABC sorrendben.

lua_Alloc

typedef void * (*lua_Alloc) (void *ud,
void *ptr,

size_t osize,

size_t nsize);

A memodria-lefoglalasi fliggvény tipusa, amit a Lua allapotok hasznélnak. A lefoglald
flggvénynek hasonldan kell miikddnie, mint a realioc, de nem pont ugyanugy. Az
argumentumai az ud, amely a 1ua_newstate nem atlatsz6 mutatdja; pt r, egy mutato,
amely a lefoglalandé/ujrafoglalandé/felszabaditand6 memariablokkra mutat, osize, a
blokk eredeti mérete; nsize, a blokk Uj mérete. A ptr értéke akkor, €s csakis akkor
NULL ha az osize értéke zérd. Amikor az nsize értéke zéro, a lefoglalé visszatérési
értéke nuLL; ha osize nem zérd, akkor fel kell szabaditania a ptr altal mutatott
blokkot. Amikor nsize nem zér6, a lefoglald akkor, és csakis akkor tér vissza nuLL
értékkel, ha nem tudta végrehajtani a kérést. Ha nsize nem z€rd €s osize z€ro, a
lefoglalénak ugy kell miikédnie, mint a ma11oc-nak. Amikor sem az nsize sem az
osize nem zéro, a lefoglaldé ugy mikédik, mint a realioc. A Lua feltételezi, hogy a
Iefoglalé soha nem hlbé.ZIk, ha osize >= nsize.

A kovetkez6kben a lefoglal6 figgvény egyszeri alkalmazasa szerepel. Ezt a
kiegészit6 eljaraskényvtarban a 1ua_newstate haszndlja.

static void *1_alloc (void *ud, void *ptr, size_t osize, size_t nsize) {
(void)ud; /* not used */
(void) osize; /* not used */
if (nsize == 0) {
free(ptr); /* ANSI requires that free(NULL) has no effect */
return NULL;
} else
/* BANSI requires that realloc (NULL, size) == malloc(size) */
return realloc(ptr, nsize);

lua_atpanic

lua_CFunction lua_atpanic (lua_State *L, lua_CFunction panicf);

Beallit egy Uj panik fliggvényt, és visszatér a régivel.

Ha a védett kérnyezeten kivil hiba keletkezik, a Lua elészor a panik fiiggvényt, majd
az exit (Ex1T_FATLURE) flggveényt hivja meg, igy kilép a host alkalmazasba. A panik
flggvény hasznalataval megel6zhetd ez a kilépés, ha soha nem tér vissza (pl. csinal
egy hosszu ugrast).

A panik fliggvény elérheti a hibalizenetet is, ami a verem tetején talalhato.

lua_ call

void lua_call (lua_State *L, int nargs, int nresults);
Meghiv egy fliggvényt.

Egy fuggveny meghivasahoz a kdvetkezd szabalyokat kell betartani: el6szér, a
hivandé fliiggvényt a verembe kell helyezni; utdna az argumentumokat kézvetlen
sorrendben, azaz az elsét el6szor. Végll meghivhaté a figgvény a 1ua_call
segitségével; nargs a verembe tett argumentumok szama. Minden argumentum és a
flggvény értéke a fliggvény hivasakor a verembdl lesz kiemelve. A fliggvény
eredmények a flggvény visszatérésekor a veremben lesznek elhelyezve. Az
eredmények szdmat a nresults szabja meg; ennek hidnydban a nresulits értéke
Lua_MULTRET. Ebben az esetben a figgvény minden eredménye verembe lesz téve. A
Lua gondoskodik arrél, hogy a visszatért értékek elférjenek a veremben. A fliggvény
eredményei kbzvetlen sorrendben lesznek elhelyezve a veremben (azaz a legelsé
eredmény kertl bele el6szor),igy a hivas utan a verem tetején a legutolsé eredmény
lesz.

A hivott fliggvény minden hibaja felfelé lesz tovabbitva (egy 1ongjmp hasznalataval).

A kdvetkezé minta megmutatja, hogyan hivhaté meg a Lua kdd a host programbdl:

a = £f("how", t.x, 14)

Ugyanez C-ben:

lua_getfield (L, LUA_GLOBALSINDEX, "f"); /* hivanddé fliggvény */
lua_pushstring (L, "how"); /* elsd argumentum */

lua_getfield (L, LUA_GLOBALSINDEX, "t"); /* Az indexelendd tomb */
lua_getfield(L, -1, "x"); /* t.x eredményének elhelyezése (madsodik arg) */
lua_remove (L, -2); /* 't' eltdvolitdsa a verembd8l */

lua_pushinteger (L, 14); /* harmadik argumentum */

lua_call(L, 3, 1); /* fliggvény hivadsa hadrom argumentummal és egy
eredménnyel */

lua_setfield (L, LUA_GLOBALSINDEX, "a"); /* az 'a' globalis valtozd

bedllitésa */

A fenti kod "kiegyensulyozott": a végére a verem az eredeti allapotdba tér vissza. Ez
egy fontos tanacs programozoknak.

lua CFunction

typedef int (*lua_CFunction) (lua_State *L);
A C flggvények tipusa.

A Lua-val térténd tdokéletes kommunikacié érdekében a C fliggvénynek a kévetkezé
szabalyokat kell kbvetnie (ezek szabalyozzak a paraméterek és az eredmények
atadasat): A C flggvény megkapja az argumentumokat a Lua-t6l annak vermében,
kdvetlen sorrendben (az els6é arumentum szerepel az elsé helyen). Igy a fliggvény
indulasakor a 1ua_gettop (1) a flggvény argumentumainak szamaval tér vissza. Az
elsé argumentum (ha van), az 1-es indexen, mig az utolsé a 1ua_gettop (1) indexen
helyezkedik el. Az eredmények visszatéréséhez a Lua-ba a C fliggvény a verembe
helyezi azokat k6zvetlen sorrendben (tehat az elsét helyezi bele elészér), és az
eredmények szamaval tér vissza. A veremben taldlhat6 tovabbi értékeket a Lua
figyelmen kivul hagyja. Mint egy Lua figgvény, a Lua éltal hivott C figgvénynek is
szamos visszatérési értéke lehet.

A kovetkezé példafliggvény a valtozé szamu szam argumentumok atlagaval és
Osszegével tér vissza:

static int foo (lua_State *L) {

int n = lua_gettop(L); /* argumentumok szama */
lua_Number sum = 0;
int 1i;
for (i = 1; 1 <= n; 1i++) {
if (!lua_isnumber (L, 1)) {
lua_pushstring (L, "incorrect argument to function 'average'");

lua_error (L) ;
}
sum += lua_tonumber (L, 1i);
}
lua_pushnumber (L, sum/n); /* elsd eredmény */
lua_pushnumber (L, sum); /* mdsodik eredmény */
return 2; /* eredmények szdma */

lua_checkstack

int lua_checkstack (lua_State *L, int extra);

Megbizonyosodik arrél, hogy van legalabb extra szabad veremhely a veremben.
false értékkel tér vissza, ha nem tudta megndvelni a verem méretét a szlikségesre.
Ez a flUggvény soha nem kicsinyiti a verem méretét; ha a verem mérete nagyobb,
mint az Uj méret, ugy hagyja.

lua_close

void lua_close (lua_State *L);

A megadott Lua allapot 6sszes objektumat megsemmisiti (a megfelelé szemétgyijté
metaeljaras meghivasaval, ha van) és az allapot altal hasznalt 6sszes dinamikus
membdriat felszabaditja. Néhany platformon nem sziikséges meghivni ezt a
flggvényt, mivel minden eréforras fel lesz szabaditva, mikor a host program futasa
véget ér. Viszont a hosszu futdsu programok esetén, mint példaul egy webszerver,
amint nincs ra szikség, azonnal fel kell szabaditani ezeket, hogy ne néhessenek tul
nagyra.

lua_concat

void lua_concat (lua_State *L, int n);

Osszefiizi a verem tetején 16vé n értéket, kiveszi 6ket, majd az eredményt a verem
tetején helyezi el. Ha n értéke 1, az eredmény a veremben 1évé egyetlen karakterlanc
(tehat nem tesz semmit); ha n 0, az eredmény egy ures karakterlanc. Az 6sszeflizés
a Lua szabdlyait kdveti (lasd §2.5.4).

lua_cpcall

int lua_cpcall (lua_State *L, lua_CFunction func, void *ud);

A func C fliggvényt védett médban futtatja. A func vermében csak egyetlen elem
van, egy kénny(userdata tipusu, melynek tartalma ud. Hiba esetén a 1ua_cpcall
ugyanazzal a hibakdddal tér vissza, mint a 1ua_pca11, plusz a hibaobjektummal a
verem tetején, egyébként a visszatérési értéke zéro, €s nem valtoztatja meg a verem
tartalmat. A func minden visszatérési értéke figyelmen kivil lesz hagyva.

lua_createtable

void lua_createtable (lua_State *L, int narr, int nrec);

Eqgy Ures tdmboét készit, majd a verem tetejére helyezi. Az 0j tdmbnek narr szamu
elére lefoglalt helye van témb elemek és nrec helye nem-tdmb elemek szamara. Az
el6-lefoglalas akkor lehet hasznos, ha pontosan tudhaté, mennyi eleme lesz a
tdbmbnek. Egyéb esetben a 1ua_newtabie flggvény hasznalando.

lua_dump

int lua_dump (lua_State *L, lua_Writer writer, void *data);

A megadott figgvényt binaris csonkka alakitja at. Egy Lua fliggvényt kap a verem

Ve

ugyanazt a flggvényt adja vissza, mint ami az atalakitas elétt volt. A csonk részeinek

létrehozasa kbézben a 1ua_dump meghivja a writer fliggvényt is (lasd 1ua_writer) az
adott data paraméterrel, irasra.

A visszatérési érték egy hibakdd, amely az ir6 altal visszaadott utolsé érték; 0 esetén
nem tértént hiba.

Ez a flggvény nem emeli ki a Lua fliggvényt a verembdl.

lua_equal

int lua_equal (lua_State *L, int indexl, int index2);

Visszatérési értéke 1, ha az index1 és index2 elfogadhat6 indexeknél talalhaté
értékek megegyeznek, a Lua == operatoranak szemantikajat kévetve (igy meghivhat
metaeljarasokat is). Egyéb esetben a visszatérési értéke 0. Szintén 0 a visszatérési
értéke, ha valamelyik index nem érvényes.

lua_error

int lua_error (lua_State *L);

Egy Lua hibat general. A hibalizenetnek (amely barmilyen Lua tipus érték lehet) a
verem tetején kell elhelyezkednie. A fliggvény hosszu ugrast hajt végre, igy soha
nem rendelkezik visszatérési értékkel. (lasd 1uar_error).

lua_gc

int lua_gc (lua_State *L, int what, int data);
A szemétgyjtét szabalyozza.

Ez a flggvény tébbféle folyamatot is végrehajthat, a what paraméter értékétél
flggben:

e Lua_ccstor: megallitjia a szemétgyijtét.

e LUA_GCRESTART: Ujrainditja a szemétgydjtét.

e LUA_cccoLLECT: elindit egy teljes szemétgyljté kort.

e LUAa_Gccount: a Lua altal hasznélt memdéria pillanatnyi értékét adja
vissza (Kbyte-okban).

e LUA_GCCOUNTB: Visszatérési értéke a Lua altal felhasznalt memoria értéke
(byte-okban) és 1024 osztasabdl szarmazé maradék.

e LUA_GCSTEP: Végrehajt egy névekményes szemétgylijté-l1épést. A Iépés
"méretét" a data hatarozza meg (nagyobb érték mellett tdbb Iépés)
meghatarozatlan médon. Ha a I1épés méretét szabalyozni akarod, a data

ertékével kell kisérletezni. Visszatérési értéke 1, ha a Iépéssel befejez6détt
egy szemétgyjté-kor.

e LUA_GCSETPAUSE: A gy(jt6 sziinetét allitja be data/100 értékre (lasd §2.10).
Visszatérési értéke a szlinet el6z6 értéke.

e LUA_GCSETSTEPMUL: A gyUijt6 lépésszorzdjat éllitja be arg/100 értékre (lasd
§2.10). Visszatérési értéke a lépésszorzo el6z6 értéke.

lua_getallocf

lua_Alloc lua_getallocf (lua_State *L, void **ud);

Visszatérési értéke a megadott allapot memdria-lefoglald fuggvénye. Ha az ua
nem ~NULL, @ Lua a 1ua_newstate Szamara atadott nem atlatszé mutatét az ~ua -ben
tarolja.

lua_getfenv

void lua_getfenv (lua_State *L, int index);

A verembe helyezi a megadott indexhez tartozé érték kdérnyezeti témbjét.

lua_getfield

void lua_getfield (lua_State *L, int index, const char *k);

A verembe helyezi a t (k] értékét, ahol t az érvényes index index értéke. Mint a Lua
nyelvben, ez a figgvény is kivalthatja az "index" metaeljarast (lasd §2.8).

lua_getglobal
void lua_getglobal (lua_State *L, const char *name);

A verembe helyezi a globalis name valtoz6 értékét. Ez makroként definialt:

#define lua_getglobal (L,s) lua_getfield(L, LUA_GLOBALSINDEX, s)

lua_getmetatable

int lua_getmetatable (lua_State *L, int index);

A verembe helyezi a megadott elfogadhaté indexen talalhat6 érték metatémbjét. Ha
az index nem érvényes, vagy az ertéknek nincs metatémbje, akkor a visszatérési
érték 0, és semmi nem kerll a verembe.

lua_gettable

void lua_gettable (lua_State *L, int index);

A verembe helyezi a t (x] értékét, ahol t az érvényes index index értéke és x az
értéke a verem tetején.

Ez a flggvény kiemeli a verembél az adott kulcsot (és az eredményét rakja be a
helyére). Mint a Lua nyelvben, ez a figgveny is kivalthatja az "index" metaeljarast

(lasd §2.8).

lua_gettop

int lua_gettop (lua_State *L);

Visszatérési értéke a verem legfelsé elemének indexe. Mivel az indexek 1-tél
indulnak, ez a szam megegyezik a veremben 1évé elemek szamaval (és igy a 0 azt
jelenti, hogy a verem (Ures).

lua_ insert

void lua_insert (lua_State *L, int index);

A legfelsé elemet a megadott érvényes indexre mozgatja, és a fentebbi elemeket
felfelé, szabad helyre csusztatja. Nem hivhatd pszeudo-indexszel, mivel egy
pszeudo-index nem az aktualis verempoziciét adja vissza.

lua_Integer
typedef ptrdiff_t lua_Integer;
Ezt a tipust a Lua APl hasznalja egész tipusu értékek létrehozasahoz.

Alapértelmezés szerint ez egy ptrdiff_t, amely rendszerint a legnagyobb integralt
tipus, amelyet a gép "kényelmesen" kezelni tud.

lua_isboolean

int lua_isboolean (lua_State *L, int index);

Visszatérési értéke 1, ha a megadott elfogadhat6 indexen talalhato6 érték tipusa
boolean, egyéb esetben 0.

lua_ iscfunction

int lua_iscfunction (lua_State *L, int index);

Visszatérési értéke 1, ha a megadott elfogadhato indexen talalhato érték egy C
flggvény, egyéb esetben 0.

lua_isfunction

int lua_isfunction (lua_State *L, int index);

Visszatérési értéke 1, ha a megadott elfogadhat6 indexen talalhaté érték fliggvény
(akar C, akar Lua), egyéb esetben 0.

lua_islightuserdata

int lua_islightuserdata (lua_State *L, int index);

Visszatérési értéke 1, ha a megadott elfogadhat6 indexen talalhat6 érték konnyd
userdata, egyéb esetben 0.

lua_isnil
int lua_isnil (lua_State *L, int index);

Visszatérési értéke 1, ha a megadott elfogadhat6 indexen talalhaté érték nil, egyéb
esetben 0.

lua_ isnumber

int lua_isnumber (lua_State *L, int index);

Visszatérési értéke 1, ha a megadott elfogadhat6 indexen talalhaté érték szam, vagy
szamma alakithato karakterlanc, egyéb esetben 0.

lua_isstring

int lua_isstring (lua_State *L, int index);

Visszatérési értéke 1, ha a megadott elfogadhat6 indexen talalhat6 érték
karakterlanc vagy szam (amely mindig karakterlancca alakithatd), egyéb esetben 0.

lua_istable

int lua_istable (lua_State *L, int index);

Visszatérési értéke 1, ha a megadott elfogadhat6 indexen talalhat6 érték tomb,
egyéb esetben 0.

lua_isthread

int lua_isthread (lua_State *L, int index);

Visszatérési értéke 1, ha a megadott elfogadhat6 indexen talalhaté érték szal, egyéb
esetben 0.

lua_isuserdata

int lua_isuserdata (lua_State *L, int index);

Visszatérési értéke 1, ha a megadott elfogadhat6 indexen talalhaté érték userdata
(akar teljes, akar kénny), egyéb esetben 0.

lua_lessthan

int lua_lessthan (lua_State *L, int index1l, int index2);

Visszatérési értéke 1, ha a megadott elfogadhatd index1 indexen talalhato érték
kisebb, mint az index2 elfogadhatd indexen talalhato érték, a Lua < operator
szemantikajanak megfelel6en (igy metaeljarasok is meghivédhatnak). Egyéb
esetben a visszatérési érték 0. Szintén 0 a visszatérési érték, ha valamelyik index
nem érvényes.

lua_load

int lua_load (lua_State *L,
lua_Reader reader,

void *data,

const char *chunkname) ;

Betolt egy Lua csonkot. Ha ekézben nem térténik hiba, a 1ua_10ad a Lua
flggvényként leforditott csonkot helyezi a verem tetejére. Egyéb esetben egy
hibalizenetet helyez oda. A 1ua_10ad visszatérési értékei:

e 0:nincs hiba;
e LUA_ERRSYNTAX: Szintaktikai hiba az el6forditas kdzben;
e LUA_ERRMEM: memoria lefoglalasi hiba.

A fliggvény csak betdlti a csonkot, de nem futtatja le azt.

A 1ua_load automatikusan érzékeli, hogy a csonk széveges vagy binaris, €s ennek
megfeleléen tolti be azt (lasd a 1uac programot).

A 1ua_load egy felhasznald altal betdltétt reader fliggvényt hasznél a csonk
olvasasara (lasd 1ua_Rreader). A data argumentum az olvasoé figgvénynek atadott,
nem atlatszé érték.

A chunkname argumentum nevet ad a csonknak, amely a hibatzenetekben, valamint
hibakereséskor van hasznalatban (lasd §3.8).

lua_newstate

lua_State *lua_newstate (lua_Alloc f, void *ud);

Létrehoz egy Uj, fuggetlen allapotot. Visszatérési értéke nurr, ha az allapot nem
létrehozhatd (memoriahiany miatt). Az £ argumentum a lefoglal6 figgvény; a Lua a
telies memorialefoglalast ezen a fliggvényen keresztiil végzi. A masodik, ud, egy nem
atlatsz6 mutatd, amelyet a Lua a lefoglalé fliggvénynek ad at minden hivaskor.

lua_newtable

void lua_newtable (lua_State *L);

Egy Uj, Gres tdombdét hoz Iétre, és a verem tetejére helyezi azt. Megegyezik
a lua_createtable (L, O, O)fﬂVéSS&L

lua_newthread

lua_State *lua_newthread (lua_State *L);

Létrehoz egy Uj szalat, a verembe helyezi, és annak a 1ua_state értéknek a
mutatojaval tér vissza, amelyik ezt a szélat adja vissza. Az ebbdl a figgvénybél
visszatért Uj allapot osztozik az eredeti allapot globalis objektumaival (példaul
témbijeivel), de rendelkezik egy flggetlen végrehajtasi veremmel is.

Egy szél lezarasara vagy megsemmisitésére nincs kifejezett fliggvény. A szélakat a
szemétgyjté algoritmus semmisiti meg, mint minden Lua objektumot.

lua_newuserdata

void *lua_newuserdata (lua_State *L, size_t size);

A figgvény felszabaditja a megadott méreti memoriateriletet, és a verembe helyezi
az Uj teljes userdata elemet a blokk cimével, és ezzel a cimmel tér vissza.

A userdata C értékeket hoz Iétre a Lua-ban. Egy teljes userdata egy memdriablokkot
reprezental. Ez egy objektum (mint egy témb): Iétre kell hozni, lehet sajat
metatdémbje, és milvelet hajthatd végre, amikor megsemmisitésre kerll. Egy teljes
userdata csak 6nmagaval egyenlé (raw egyenldéség esetén).

Amikor a Lua 6sszegydijt egy olyan teljes userdata elemet, amelynek van gc
metaeljarasa, a Lua meghivja azt, majd a userdata elemet véglegesitettnek jeldli.
Amikor ez a userdata elem Ujra 6sszegydjtésre keril, a Lua felszabaditja a megfelel6
memodriat.

lua_next

int lua_next (lua_State *L, int index);

Kiemel egy kulcsot a verembdl, majd a megadott indexen talalhaté kulcs-érték part
helyezi bele (a megadott kulcs utani "kdvetkez8" part). Ha nincs tébb elem a
tdmbben, a 1ua_next visszatérési értéke 0 (és nem helyez a verembe semmit).

Eqgy tipikus bejaras igy néz ki:

/* A tdmb a veremben a 't' indexnél helyezkedik el */
lua_pushnil(L); /* elsd kulcs */

while (lua_next (L, t) != 0) {
/* 'kulcs' a -2-es indexnél van, az 'érték' -1 indexnél */
printf ("$s - %s\n",
lua_typename (L, lua_type (L, -2)), lua_typename (L, lua_type(L, -1)));

lua_pop (L, 1); /* eltédvolitja az 'értéket'; megtartja a 'kulcsot' a
kovetkezé iterédcidhoz */

}

Egy témb bejarasa kézben ne hasznaljuk kdzvetlendl a 1ua_tolstring hivast egy
kulcson, hacsak nem biztos, hogy az aktudlis kulcs karakterlanc. A 1ua_tolstring
Ujrahivasa megvaltoztatia a megadott indexen talalhat6 értéket, ami 6sszezavarja a
kdvetkez6 1ua_next hivast.

lua Number

typedef double lua_Number;

A Lua altal hasznalt szamok tipusa. Alapértelmezés szerint ez dupla (double), de
megvaltoztathat6é a 1uaconf.n fajlban.

A konfiguracios fajl segitségével a Lua més szam-tipusokkal is végezhet miveleteket
(pl. lebegbdpontos (float) vagy hosszu (long)).

lua_objlen

size_t lua_objlen (lua_State *L, int index);

Visszatérési értéke a megadott elfogadhat6 indexen talalhat6 érték "hossza":
karakterlanc esetén annak hossza, témbdk esetén a hossz operator eredménye ('#');
userdata tipus esetén a szamara lefoglalt memdériablokk mérete, egyéb értekek
esetén 0.

lua_pcall

lua_pcall (lua_State *L, int nargs, int nresults, int errfunc);
Védett modban hiv meg egy fliggvényt.

Mind a nargs, mind a nresults jelentése ugyanaz, mint a 1ua_cal1 esetén. Ha nem
térténik hiba a hivas kézben, 1ua_pcall pontosan ugyanugy viselkedik, mint

a lua_call. Azonban ha hiba térténik, a 1ua_pcal1 lekezeli azt, egyetlen értéket
helyez a verem tetejére (a hibalizenetet), és a hibakdddal tér vissza. A 1ua_cal1-hoz
hasonldan, a 1ua_pcali is mindig eltavolitja a verembdl a fliggvényt, valamint annak
argumentumait.

Ha az errfunc értéke 0, akkor a veremben visszatérd hibalizenet megegyezik az
eredeti hibalizenettel. Egyéb esetben az errfunc egy hiba kezel6 fliggveny
veremindexe. (A jelenlegi implementaciéban ez az index nem lehet pszeudo-index.)
Futtatasi hiba esetén ez a fliggvény a hibalizenettel lesz meghivva, és a visszatérési
értéke a 1ua_pcall altal a verembe helyezett hibalizenet lesz.

A hibakezel6 figgvény leginkdbb arra szolgal, hogy tovabbi hibakeresési
informéacidkat adhassunk a hibatizenethez, mint példaul a verem visszavezetés
(stack traceback). Ezek az informacidk a 1ua_pcal1 visszatérése utdn mar nem
gyUjthetéek 6ssze, mivel akkorra a verem mar kitrdl.

A 1ua_pcall fliggvény visszatérési értéke 0 siker esetén, egyéb esetben a kdvetkezd
hibakodok szerepelhetnek (a 1ua.n fajlban vannak definialva):

e Lua_ERRRUN: futtatasi hiba (runtime error).

e LUA_ERRMEM: memoria lefoglalasi hiba. llyen hiba esetén a Lua nem hivja meg
a hibakezel6 flggvényt.
e LUA_ERRERR: Hiba a hibakezel6 fliggvény futtatasa kézben.

lua_pop

void lua_pop (lua_State *L, int n);

Kiemel n elemet a verembdl.

lua_pushboolean

void lua_pushboolean (lua_State *L, int b);

A verembe helyez egy boolean értéket b értékkel.

lua_pushcclosure

void lua_pushcclosure (lua_State *L, lua_CFunction fn, int n);
Egy 0j C zarvanyt helyez a verembe.

Amikor egy C flggvény létrejon, tarsithatd hozza néhany érték, ami igy egy C
zarvanyt hoz létre (lasd §3.4); ezutan ezek az értékek barmikor elérhetbek lesznek,
amikor a fliggvény meg lesz hivva. Ertékek C fliggvényhez tarsitasahoz elészér
ezeket az értékeket a verembe kell helyezni (t6bb érték esetén az elsé érték legyen
el6szoér elhelyezve). Ezutan a 1ua_pushcclosure lesz meghivva, hogy hozza létre a C
flggvényt és helyezze a verembe. Az n argumentum adja meg, hogy mennyi érték
van a fuggvényhez tarsitva. A 1ua_pushcclosure kiemeli az értékeket a verembdl.

lua_pushcfunction

void lua_pushcfunction (lua_State *L, lua_CFunction f);

A verembe helyez egy C flggvényt. A fliggvény egy C flggvényre mutaté mutatét
kap, és a verembe helyezi a function Lua tipusat, igy amikor meg lesz hivva, ehhez
a megfelelé C flggvényt hivja segitségil.

Barmilyen, Lua-ban regisztraland6 fliggvénynek pontosan kdvetnie kell a protokollt,
hogy megkaphassa a paramétereit, és visszatérhessen az eredményekkel (lasd

lua_CFunction)

A lua_pushcfunction (L, f£f) megegyezik a kovetkezovel: lua_pushcclosure (L, f,
0).

lua_pushfstring

const char *lua_pushfstring (lua_State *L, const char *fmt, ...);

A verembe helyez egy formazott karakterlancot, és a karakterlancra mutaté
pointerrel tér vissza. Hasonlit a sprint £ C fllggvényhez, de van néhany fontos
kilénbség:

« Nem kell helyet felszabaditani az eredménynek: a visszatérési érték egy Lua
karakterlanc, és a Lua gondoskodik a meméria-lefoglalasrél (és
felszabaditasrél, a szemétgydljtésen keresztll).

» Az atalakitasi vezérl6k korlatozottabbak. Nincsenek jelzék (flagek),
szélességek (widths) és pontossagok. Az atalakitasi vezérlék a kévetkezéek
lehetnek: 'ss' (Egy 's' jelet helyez a karakterlancba), 'ss' (egy zéro-végi
karakterlancot helyez el, méretbeli korlatozasok nélkdl), 's ' (egy 1ua_Number-t
helyez el), 'sp' (egy mutatot helyez el hexadecimalis szamként), 'sd' (egy int
egész szamot helyez el), és 'sc' (egy int egész szamot helyez el
karakterkent).

lua pushinteger

void lua_pushinteger (lua_State *L, lua_Integer n);

Egy n értékli egész szamot helyez a verembe.

lua_pushlightuserdata

void lua_pushlightuserdata (lua_State *L, void *p);
Egy kdnny(userdata-t helyet a verembe.

A userdata C értékeket jelent Lua-ban. Eqy kénnyii userdata egy mutatét képvisel.
Ez egy érték (mint egy szam): nem kell Iétrehozni, nincs egyedi metatdbmbje és nem
lesz 6sszegydjtve (mivel soha nem is volt 1étrehozva). Egy kénny(userdata
megegyezik "barmelyik" kdnnyl userdata-val, amelynek ugyanaz a C cimzése.

lua_pushlstring

void lua_pushlstring (lua_State *L, const char *s, size_t len);

A verembe helyezi az s altal mutatott 1en méretl karakterlancot. A Lua egy belsé
masolatot készit (vagy Ujra felhasznal) az adott karakterlancrol, igy az s
memb©riaterllete kdzvetlendl a figgvény visszatérése utan felszabadithaté vagy Gjra
felhasznalhaté. A karakterlanc tartalmazhat beagyazott zérokat.

lua_pushnil

void lua_pushnil (lua_State *L);

Egy nil értéket helyez el a verem tetején.

lua_pushnumber

void lua_pushnumber (lua_State *L, lua_Number n);

Egy n értékl szamot helyez a verembe.

lua_pushstring

void lua_pushstring (lua_State *L, const char *s);

A verembe helyezi az s altal mutatott 1en méretd, zér6 végi karakterlancot. A Lua
egy belsdé masolatot készit (vagy Ujra felhasznal) az adott karakterlancrol, igy az s
memb©riaterllete kdzvetlendl a fliggvény visszatérése utan felszabadithaté vagy Gjra
felhasznalhaté. A karakterlanc nem tartalmazhat beagyazott zérdkat; az elsé ilyen a
karakterlanc végeét fogja jelenteni.

lua_pushthread

int lua_pushthread (lua_State *L);

A verembe helyezi az 1 altal képviselt szalat. Visszatérési értéke 1, ha ez a szal az
adott allapot fészala.

lua_pushvalue

void lua_pushvalue (lua_State *L, int index);

A verembe helyezi a megadott érvényes indexen talalhatd érték masolatat.

lua_pushvfstring

const char *lua_pushvfstring (lua_State *L,
const char *fmt,
va_list argp);

Megegyezik a 1ua_pushfstring hivassal, kivéve, hogy ez egy va_1ist paramétert
kap az argumentumok szama helyett.

lua_rawequal

int lua_rawequal (lua_State *L, int indexl, int index2);

Visszatérési értéke 1, ha az index1 és index2 elfogadhaté indexen talalhat6 értékek
primitiven megegyeznek (azaz barmilyen metaeljaras meghivasa nélkal). Egyéb
esetben a visszatérési értéke 0. Szintén 0-val tér vissza, ha a megadott indexek
valamelyike nem érvényes.

lua_rawget

void lua_rawget (lua_State *L, int index);

A 1ua_gettable hivashoz hasonl6éan mikddik, de raw elérést hajt végre (tehat
metaeljarasok nélkiil).

lua_rawgeti

void lua_rawgeti (lua_State *L, int index, int n);

A verembe helyezi a t [n] értékét, ahol t az érvényes index index értéke. Az elérés
raw formatumu, igy nem hajt végre metaeljarasokat.

lua_rawset

void lua_rawset (lua_State *L, int index);

A 1ua_settable hivashoz hasonl6éan mikdédik, de raw értékadast hajt végre (tehat
metaeljarasok nélkiil).

lua_rawseti

void lua_rawseti (lua_State *L, int index, int n);

Ugyanazt hajtja végre, minta t (n] = v, ahol t az érvényes index index értéke, és v
a verem tetején Iévo érték.

Ez a flggvény kiemeli a verem tetején Iévo értéket. Az értékadas raw formatumdu, igy
nem hajt végre metaeljardsokat.

lua_Reader

typedef const char * (*lua_Reader) (lua_State *L,
void *data,
size_t *size);

Az olvasé fliggvényt a 1ua_1o0ad hasznalja. Minden alkalommal, amikor sziiksége van
egy csonk Ujabb részére, a 1ua_1o0ad meghivja az olvasét, végigmenve a data
paraméteren. Az olvasonak a csonk Uj részletét tartalmazé memaoriablokk
mutatdjaval kell visszatérnie, és a size értékét a blokk méretére kell allitania. A
blokknak addig kell Iéteznie, amig az olvaso fliggvény Ujra meg lesz hivva. A csonk
végeét az jelenti, ha az olvasé visszatérési ertéke nurw. Az olvasd barmekkora méreti
darabbal visszatérhet, ami nagyobb, mint nulla.

lua_register

void lua_register (lua_State *L, const char *name, lua_CFunction f);

A megadott £ C flggvényt allitja be a globalis name Uj értékeként. Ez egy makroként
van definialva:

#define lua_register(L,n,f) (lua_pushcfunction(L, f), lua_setglobal (L, n))

lua_ remove

void lua_remove (lua_State *L, int index);

Eltavolitja a megadott érvényes indexen talalhato értéket, majd az ef6lott 1évé
indexeket lefelé csusztatva betdlti a hézagokat. Ne hivhaté meg pszeudo-indexszel,
mivel egy pszeudo-index nem az aktualis verempozicio.

lua_replace

void lua_replace (lua_State *L, int index);

A legfelsé elemet a megadott poziciéra mozgatja (és kiemeli azt), a tébbi elem
csusztatasa nélkdl (igy athelyezi a megadott pozicidban Iévé értéket).

lua_resume

int lua_resume (lua_State *L, int narg);
Elinditja és folytatja a korutint a megadott szalban.

Egy korutin inditasahoz el6szér |étre kell hozni egy U] szalat (Iasd 1ua_newthread);
majd a vermébe kell helyezni f6 fliggvényét és annak argumentumait; ezutan hivhaté
a lua_resume, ahol a narg az argumentumok szamat adja meg. Ez a hivas akkor tér
vissza, ha a korutin szlinetel, vagy befejezi a futasat. Amikor visszatér, a verem
tartalmazza a 1ua_yield-nek atadott 6sszes értéket, vagy az 6sszes, féfliggvény altal
visszatért értéket. A 1ua_resume visszatérési értéke Lua_v1eLnp, ha a korutin szlinetel,
0, ha a korutin hiba nélkil befejezi futasat, vagy hiba esetén egy hibakod (lasd
lua_pcall). Hiba esetén a verem nem (rl0l ki, igy hasznélhaté rajta a hibakeres6 API.
A hibalizenet a verem tetején talalhat6. A korutin Ujrainditdsdhoz annak vermébe kell
helyezni a yie1d visszatérési értékeit, majd utana meghivni a 1ua_resume-t.

lua_setallocft

void lua_setallocf (lua_State *L, lua_Alloc f, void *ud);

Megvaltoztatja egy megadott allapot lefoglal6 fliggvényét t-re, ua felhasznaldi
adattal.

lua_setfenv

int lua_setfenv (lua_State *L, int index);

Kiemel egy témbdét a verembél, és a megadott indexen talalhato érték U
kdérnyezeteként éllitja azt be. Ha a megadott indexen 1évé érték nem fliggvény, vagy
nem userdata, a 1ua_set fenv visszatérési értéke 0. Egyéb esetben 1.

lua_setfield

void lua_setfield (lua_State *L, int index, const char *k);

Ugyanazt hajtja végre, minta t (k] = v, ahol t az érvényes index index értéke, és v
a verem tetején Iévé érték.

Ez a fuggveény kiemeli a verem tetején 1évd értéket. Mint a Lua, ez a flggveny is
végrehajthatja a "newindex" metaeljarast (lasd §2.8).

lua_setglobal

void lua_setglobal (lua_State *L, const char *name);

Kiemel egy értéket a verembdl, és bedllitja a globalis name Uj értékeként. Ez egy
makroként van definialva:

#define lua_setglobal (L,s) lua_setfield(L, LUA_GLOBALSINDEX, s)

lua_setmetatable

int lua_setmetatable (lua_State *L, int index);

Kiemel egy tdmboét a verembdl, és a megadott elfogadhat6 indexen talalhaté érték Uj
metatdmbjeként allitja azt be.

lua_settable

void lua_settable (lua_State *L, int index);

Ugyanazt hajtja végre, minta t (k] = v, ahol t az érvényes index index értéke, v a
verem tetején 1évd érték és x a verem tetejétdl szamitott masodik érték.

Ez a fliggvény mind a kulcsot, mind az értéket kiemeli a verembdl. Mint a Lua, ez a
flggvény is végrehajthatja a "newindex" metaeljarast (lasd §2.8).

lua_settop

void lua_settop (lua_State *L, int index);

Barmilyen elfogadhat6 indexet elfogad, vagy 0-t, és a verem tetejét ehhez az
elemhez dllitja be. Ha az uj tetépont magasabb, mint a régebbi, az Ujabb elemek nil
értéket vesznek fel. Ha az index értéke 0, akkor az 6sszes elem el lesz tavolitva a
verembdl.

lua_State

typedef struct lua_State lua_State;

Egy olyan nem atlatszé struktira, amely az egész Lua értelmez6 allapotat tarolja. A
Lua eljaraskoényvtar teljesen Ujrakezdhetd: nincsen globalis valtozéja. Egy allapot
minden informacidja ebben a struktdraban talalhaté.

Az eljaraskényvtar minden flggvényének elsé paramétere egy olyan mutatd, amely
erre az allapotra mutat, kivéve a 1ua_newstate esetén, amely a semmibdl hozza létre
a Lua allapotot.

lua_status

int lua_status (lua_State *L);
Visszatérési értéke az 1. szal allapota.

Az allapot 0 normal szal esetén, hibakdd, ha a szal hibaval fejezte be a futdsat,
vagy Lua_vIeLD, ha a szdl szlineteltetve van.

lua_toboolean

int lua_toboolean (lua_State *L, int index);

A megadott elfogadhat6 indexen talalhatd Lua értéket boolean (0 vagy 1) értékke
alakitja at. Mint minden teszt a Lua-ban, a 1ua_toboolean visszatérési érteke 1
barmely Lua érték esetén, amely kulénbdzik false-tdl és nil-t6l; egyébkent 0-val tér
vissza. Szintén 0 a visszatérési érték, ha nem érvényes indexszel van meghivva. (Ha
aktualisan csak boolean értékeket akarsz elfogadni, hasznald a 1ua_isboolean
hivast, hogy teszteld az érték tipusat.)

lua_tocfunction

lua_CFunction lua_tocfunction (lua_State *L, int index);

A megadott elfogadhat6 indexen talalhatéd értéket C fliggvénnyé alakitja at. Az érték
csak C fliggvény lehet, egyéb esetben a visszatérési érték nurr.

lua_tointeger

lua_Integer lua_tointeger (lua_State *L, int idx);

A megadott elfogadhat6 indexen talalhato értéket eldjeles integralt 1ua_integer
tipussa alakitja at. A Lua értéknek szamnak, vagy szamma alakithaté
karakterlancnak kell lennie (lasd §2.2.1); egyébként a 1ua_tointeger visszatérési
értéke 0.

Ha a szam nem egész tipusu, akkor nem-meghatarozott médon atalakitasra kertil.

lua_tolstring

const char *lua_tolstring (lua_State *L, int index, size_t *len);

A megadott elfogadhat6 indexen talalhatd Lua értéket karakterlancca alakitja at
(const char*). Ha a 1en nem nuwL, akkor a *1en értékét a karakterlanc hosszanak
megfeleld értékre allitja. A Lua értéknek szdmnak vagy karakterlancnak kell lennie,
egyébként a fliggvény visszatérési értéke nurr. Ha az érték szam, a 1ua_tolstring a
jelenleqgi értékét karakterlancca alakitja a veremben. (Ez a véltoztatas
Osszezavarhatja a 1ua_next-et, amikor a 1ua_tolstring egy kulcson van
végrehajtva, tdmb-bejaras alatt.)

A 1ua_tolstring visszatérési értéke egy teljesen sorbarendezett mutatd, amely a
Lua allapoton beliil a karakterlancra mutat. Ez a karakterlanc mindig zéroval
végzdadik ("\0') az utolsé karakter utan (mint a C-ben), de tébb beagyazott zérét is
tartalmazhat. Mivel a Lua szemétgydijtéssel is rendelkezik, nincs garancia arra, hogy
a lua_tolstring hivasbol visszatérd mutatd érvényes, miutan a megfeleld érték el
lesz tavolitva a verembdl.

lua_tonumber

lua_Number lua_tonumber (lua_State *L, int index);

A megadott elfogadhat6 indexen talalhatd Lua értéket szamma alakitja at (lasd
1ua_Number). A Lua értéknek szamnak, vagy szamma alakithat6 karakterlancnak kell
lennie (lasd §2.2.1); egyéb esetben a 1ua_tonumber visszaterési értéke 0.

lua_topointer

const void *lua_topointer (lua_State *L, int index);

A megadott elfogadhat6 indexen talalhatd értéket altalanos C mutatéva (voiax)
alakitja at. Az érték lehet userdata, tdmb, szal vagy figgvény, egyéb esetben

a lua_topointer Visszatérési értéke nurr. Kilénbdz6 objektumok kilénbdzd
mutatdkat eredményeznek. Egy mutat6 eredeti értékére t6rténd visszaalakitasara
nincs lehet6ség.

Ez a fuUggveény altaldban hibakeresé informaciok gyljtésekor van hasznalatban.

lua_tostring

const char *lua_tostring (lua_State *L, int index);

Megyegyezik a 1ua_tolstring fggvénnyel, de a 1en értéke nuLL.

lua_tothread

lua_State *lua_tothread (lua_State *L, int index);

A megadott elfogadhat6 indexen talalhatd értéket Lua szalla alakitja at (amit a
1ua_statex képvisel). Az értéknek szalnak kell lennie, egyébként a fliggvény
visszatérési értéke nuLL.

lua_touserdata

void *lua_touserdata (lua_State *L, int index);

Ha a megadott elfogadhato indexen talalhato érték teljes userdata, visszatérési
értéke a blokk cime. Ha az érték kénny(userdata, visszatérési értéke a mutatdja.
Egyéb esetben a visszatérési érték nurr.

lua_type

int lua_type (lua_State *L, int index);

Visszatérési értéke a megadott elfogadhat6 indexen talalhaté érték tipusa,

vagy Lua_TnoNE érvénytelen index esetén (tehat olyan index, ami "Ures"
verempoziciéra mutat). A 1ua_type altal visszatéré tipuskdédok a 1ua.n fajlban vannak
definialva: Lua_TNIL, LUA_TNUMBER, LUA_TBOOLEAN, LUA_TSTRING, LUA_TTABLE,
LUA_TFUNCTION, LUA_TUSERDATA, LUA_TTHREAD, éS LUA_TLIGHTUSERDATA.

lua_typename

const char *lua_typename (lua_State *L, int tp);

Visszatéresi értéke a tipus neve, amelyet a tp értéke hataroz meg, ami mindig
a lua_type flggvény egyik visszatérési értéke.

lua_Writer

typedef int (*lua_Writer) (lua_State *L,
const void* p,

size_t sz,

void* ud);

Az ird fliggvényt a 1ua_dump hasznalja. Minden alkalommal, amikor egy csonk Gjabb
darabjat elkésziti, a 1ua_dump meghivja az irét, végigmenve az irando (p) bufferen, az
(sz) méretén, és a data 1ua_dump altal atadott paraméteren.

Az ir6 hibakdddal tér vissza: 0 esetén nem tortént hiba; barmilyen mas érték hibat
jelent, és megallitja a 1ua_dump flggvényt, hogy ne hivja Gjra az irét.

lua_xmove
void lua_xmove (lua_State *from, lua_State *to, int n);
Ertékeket cserél ki azonos globalis allapoton beliil 16vé kilénbdzd szalak kdzott.

A flggvény kiemel n értéket a verembél from poziciotdl kezdve, és a to verembe
helyezi 6ket.

lua yield
int lua_yield (lua_State *L, int nresults);
Szlneteltet egy korutint.

Ez a fuUggveény csak egy C flggvény visszatérési értekeként hivhatdé meg, a
kdvetkez6k szerint:

return lua_yield (L, nresults);

Amikor a C fliggvény ezen a modon hivja meg a 1ua_yield-et, a futd korutin
szlUnetelteti a futasat, valamint az a fliggvény, amelyik kiadta a 1ua_resume hivast,
visszatér. A nresults paraméter a 1ua_resume flggvénynek atadott paraméterek
szama a veremben.

3.8 - A Debug Interfész

A Lua nyelvben nincs beépitett hibakeresési szolgaltatas. Ezzel szemben egy
specialis fellletet biztosit fliggvények és hurkok segitségével. Ez a fellilet biztositja,
hogy debuggerek, profilozok és egyéb olyan eszkdzok is 1étrehozhatbéak legyenek,
amelyek belsé informacidkat adnak a feldolgozorol.

lua_Debug

typedef struct lua_Debug ({

int event;

const char *name; /* (n) */

const char *namewhat; /* (n) */

const char *what; /* (S) */

const char *source; /* (S) */

int currentline; /* (1) */

int nups; /* (u) number of upvalues */
int linedefined; /* (S) */

int lastlinedefined; /* (S) */

char short_src[LUA_IDSIZE]; /* (S) */
/* private part */

other fields

} lua_Debug;

A struktdra az aktiv fliggvény kilénbdzé informaciéit tartalmazza. A 1ua_getstack
ennek a struktiranak csak a privat részeit tolti fel, késébbi hasznalatra. A 1ua_bebug
tébbi mezdjének hasznos informacidkkal valo feltéltésére a 1ua_getinfo hasznalhato.

A 1ua_pebug mezdinek jelentése:

source: Ha a flggvény karakterlancként lett definialva, akkor a source értéke
az adott karakterlanc. Ha a fliggvény egy fajlban van definialva, akkor

a source egy '¢'jellel kezdddik, és a fajl nevével folytatodik.

short_src: A source "nyomtathatd" valtozata, hibatizenetekben van
hasznalatban.

linedefined: A sOr szama, ahol a figgvény definicioja kezd6dik.
lastlinedefined: A sOr szama, ahol a figgvény definicioja befejezddik.
what: Ertéke a "Lua karakterlanc, ha az adott fliggvény egy Lua

flggvény, rcr, ha C fliggvény, "main", ha egy csonk f6 része, és "tai1", ha
egy olyan faggvény volt, ami véghivast hajtott végre. Utébbi esetben, a Lua-
nak nincs tovabbi informacidja a fliggvényrél.

currentline: Az adott fliggvény végrehajtédd sora. Ha nincs informéacio a
sorrdl, a currentline értéke -1.

name: Az adott flggvény neve elfogadhat6 formaban. Mivel a Lua-ban a
flggvények els6-osztalyu ertékek, nincs alland6 nevik: néhany fliggvény tdébb
globalis valtoz6 értéke is lehet, mig masok csak témbmezéként tarolédhatnak.
A 1ua_getinfo flggvény ellendrzi, hogy a fliggvény hogyan lett meghivva,
hogy megfelel6 nevet talaljon neki. Ha nem talal ilyet, akkor a name értéke
NULL.

namewhat: Megmagyarazza a name mezét. A namewhat értéke lehet "giobair,
"local", "method", "field", "upvalue", VAagy ""(Ures karakuaﬂénc),aﬁél
flggden, hogy a fliggvény hogyan lett meghivva. (a Lua Ures karakterlancot
hasznal, amikor mas opcié nem tiinik elfogadhatonak.)

nups: A fliggény upvalue értékeinek szama.

lua_gethook

lua_Hook lua_gethook (lua_State *L);

Visszatérési értéke a jelenlegi hurok fliggvény.

lua_gethookcount

int lua_gethookcount (lua_State *L);

Visszatérési értéke a jelenlegi hurkok szama.

lua_gethookmask

int lua_gethookmask (lua_State *L);

Visszatérési értéke a jelenlegi hurok maszk.

lua_getinfo

int lua_getinfo (lua_State *L, const char *what, lua_Debug *ar);
Informacokkal tér vissza a megadott fliggvényrdl vagy figgvenyhivasrol.
Hogy informacioét kapjunk egy figgvényhivasrél, az ar paraméternek valds aktivizalé

rekordnak kell lennie, amelyet el6z6leg a 1ua_getstack 16lt6tt fel, vagy a hurok
argumentumaként lett atadva (lasd 1ua_Hook).

Hogy informacioét nyerhessiink egy figgvényrél, elészér a verembe kell helyezni, és
a what karakterlancnak a '>' karakterrel kell kezdédnie. (Ebben az esetben, a
lua_getinfo kiemeli a figgvény a verembdl.) Példaul, hogy megtudhassuk, az £
flggvény melyik sorban lett definidlva, a kévetkezé kéd hasznalhaté:

lua_Debug ar;

lua_getfield (L, LUA_GLOBALSINDEX, "f"); /* globdlis 'f' lekérése */
lua_getinfo (L, ">S", &ar);
printf ("$d\n", ar.linedefined);

A what karakterlancban minden egyes karakter az ar struktira egy bizonyos mezéjét
tolti ki, vagy egy érték, amely a verembe lesz helyezve:

e 'n'": Kitblti @ name €S namewhat mezc’Sket;

e 's": KitOlti @ source, 1inedefined, lastlinedefined, what, €S short_src
mezbéket;

e "1": K“é”i&(ﬂuﬁentlinefﬂGZﬁt

e 'u': Kitblti @ nups mez6t;

o '£': Averembe helyezi a megadott szinten futé fliggvényt;

e 'L": Averembe helyezi azt a témbét, amelynek indexei a figgvény érvényes
sorainak szama. (Egy érvényes sor olyan sort jelent, amelyhez kéd tarsul, igy
olyan sor, ahol téréspont helyezhet6 el. A nem érvényes sorokhoz tartoznak
az Ures sorok és a megjegyzések.)

A figgvény visszatérési értéke 0 hiba esetén (példaul ha a wnat értéke érvénytelen).

lua_getlocal

const char *lua_getlocal (lua_State *L, const lua_Debug *ar, int n);

Informaciét ad a megadott aktivizald rekordon talalhaté lokalis valtozordl. Az ar
paraméternek valds aktivizald rekordnak kell lennie, amelyet el6z6leg a 1ua_getstack
toltott fel, vagy a hurok argumentumaként lett atadva (lasd 1ua_took). Az n index
valasztja ki a megvizsgalandé lokalis valtozot (1 az elsé paraméter vagy aktiv lokalis
valtozo, és igy tovabb, egészen az utolso6 aktiv lokalis valtozdig.) A 1ua_getlocal a
valtozok értékét a verembe helyezi, és a neviikkel tér vissza.

Az olyan véltozénevek, amelyek ' (" jellel (nyitd zarojellel) kezdédnek, belsé valtozokat
képviselnek (ciklusvezérld valtozok, ideiglenes valtozok és C fliggvények lokalis
valtozéi).

Visszatérési értéke nurL (és nem helyez a verembe semmit), ha az index nagyobb,
mint az aktiv lokalis valtozék szama.

lua_getstack

int lua_getstack (lua_State *L, int level, lua_Debug *ar);
Informaciét ad a feldolgoz6 futasi vermérdl.

Ez a flUggvény részlegesen feltdlti a 1ua_pebug strukturat a megadott szinten futd
flggvény aktivacios rekordjanak azonositéjaval. A 0. szint a jelenlegi flUggveny, az
n+1. szint pedig a jelenlegi fliggvény altal hivott n. szint. Ha nem térténik hiba, a
lua_getstack visszatérési értéke 1; ha magasabb szinttel lesz meghivva, mint az
aktudlis veremmeéret, akkor a visszatérési érték 0.

lua_getupvalue

const char *lua_getupvalue (lua_State *L, int funcindex, int n);

Lekéri egy zarvany fels6értékeit. (Lua fliggvények esetén a fels6értékek olyan kiilsé
lokdlis valtozék, amelyeket a fliggvény hasznal, és igy kdvetkezésképpen a zarvanya
is tartalmazza). A 1ua_getupvalue az n. szintl felséértéket kéri le, majd ennek értékét
a verembe helyezi, és a nevével tér vissza. funcindex a zarvany verembeli helyére
mutat. (A felsd értékeknek nincs egyéni rendezettségik, mivel az egész fliggvényen
keresztiil aktivak. Emiatt tetsz6leges sorrendben lesznek szamozva.)

Visszatérési értéke nurL (és nem helyez a verembe semmit) ha az index nagyobb,
mint a felséértékek szama. C flggvények esetén ez a fliggvény az dres
karakterlancot (") haszndlja a fels6értékek neveiként.

lua Hook

typedef void (*lua_Hook) (lua_State *L, lua_Debug *ar);

A hibakeresési hurokfliggvények tipusa.

Amikor egy hurok meg lesz hivva, az ar argumentumnak van egy event mezéje,
amely azt a megadott eseményt jeldli, amely elinditotta a hurkot. A Lua a kévetkez6
konstansokkal azonositja ezeket az eseményeket: L.uA_HOOKCALL, LUA_HOOKRET,
LUA_HOOKTAILRET, LUA_HOOKLINE, €S LUA_HOOKCOUNT. Ezen felll a sor eseményeknél

a currentline mez6 is be lesz allitva. Az ar egyéb mezéinek lekéréséhez a
huroknak meg kell hivnia a 1ua_getinfo fliggvényt. A visszatérési események esetén
az event lehet Lua_nookreT, az alapértelmezett értek, vagy Lua_HOOKTATILRET. A
masodik esetben a Lua egy visszatérést szimulal a figgvénybdl, ami véghivast
hajtott végre; ebben az esetben nem sziikséges a 1ua_getinfo hivasa.

Amig a Lua futtatja a hurkot, letiltja a hurok egyéb hivasat. Tehat ha egy hurok
meghivja a Lua-t, hogy hajtson végre egy fliggvényt vagy csonkot, a futtatas hurkok
meghivasa nélkil fog lezajlani.

lua_sethook

int lua_sethook (lua_State *L, lua_Hook func, int mask, int count);
Bedllitja a hibakeresési hurokfliggvényt.

A func a hurokfliggvény. A mask értéke adja meg, hogy milyen eseményeknél legyen
meghivva a hurok: a kialakitdsa a konstansok bitenkénti 'or'-al lett |étrehozva
LUA_MASKCALL, LUA_MASKRET, LUA_MASKLINE, €S LUA_MASKCOUNT. A count argumentum
csak akkor van hasznalatban, ha a maszk tartalmazza a tua_maskcount konstanst.
Egyes események esetén a hurok az alabbiak szerint lesz meghivva:

e A hivé hurok: Akkor lesz meghivva, amikor a feldolgozé meghiv egy
flggvényt. A hurok akkor lesz meghivva, amikor a Lua belép az Uj
flggvénybe, de miel6tt a fliggvény megkapna az argumentumait.

» A visszatérési hurok: Akkor lesz meghivva, amikor a feldolgoz6 visszatér
egy fuggvénybdl. A hurok akkor lesz meghivva, mielétt a lua elhagyna a
flggvényt. A flggveény visszatérési ertékei nem elérhetbek innen.

« A sor hurok: Akkor lesz meghivva, amikor a feldolgozé egy Ujabb sor
végrehajtasat megkezdi, vagy visszafelé ugrik a kédban (még ha azonos
sorhoz is). (Ez az esemény csak akkor térténhet meg, amikor a Lua egy Lua
flggvényt hajt végre.)

o A szamlalé hurok: Akkor lesz meghivva, amikor a feldolgoz6 végrehaijt
minden count utasitast. (Ez az esemény csak akkor térténhet meg, amikor a
Lua egy Lua fuggveényt hajt végre.)

A hurok a mask zérd értékével kapcsolhaté ki.

lua_setlocal

const char *lua_setlocal (lua_State *L, const lua_Debug *ar, int n);

A megadott aktivaciés rekord lokalis valtozojat a megadott értékkel latja el. Az ar és n
paraméterek ugyanazok, mint a 1ua_getlocal fliggvény esetén (lasd 1ua_getlocal).
A 1ua_setlocal a verem tetején l1évé értéket adja a valtozdnak, és a nevével tér
vissza. Az értéket kiemeli a verembdl.

Visszatérési értéke nurL (és nem emel ki semmit a verembdl) ha az index nagyobb,
mint az aktiv lokalis valtozok szama.

lua_setupvalue

const char *lua_setupvalue (lua_State *L, int funcindex, int n);

A megadott zarvany fels6értékének értékét allitja be. A funcindex és n paraméterek
ugyanazok, mint a 1ua_getupvalue figgvény esetén (Iasd 1ua_getupvalue). A verem
tetején 1évo értéket adja a felséértéknek, és a nevével tér vissza. Az értéket kiemeli a
verembdl.

Visszatérési értéke nurL (és nem emel ki semmit a verembdl) ha az index nagyobb,
mint a felséértékek szama.

4 - A segédkonyvtar

A segédkédnyvtar tdbb kényelmi fliggvényt is biztosit a C és a Lua k6z6tt. Mig az alap
API primitiv flggvények segitségével biztositja a parbeszédet a C és a Lua kdzott,
addig a segédkdnyvtar magasabb szintl fliggvényeket biztosit néhany altalanos
feladat ellatasahoz.

A segédkodnyvtar 6sszes fllggvénye a 1aux1ib.h fejlécfajlban van definialva, és
a 1uar,_ prefixszel rendelkezik.

A segedkodnyvtar minden flaggvénye az alap APl alapjan épdil fel, igy semmi olyat
nem tartalmaz, amit nem lehetne megoldani ezen API hasznalataval.

A segédkdnyvtar tébb fliggvénye is ellenérzi a C fliggvények argumentumait.
Ezeknek a neve mindig 1ual._check* vagy lual_opt* kifejezéssel kezd6dik. Ezek
mindig hibat érnek el, ha az ellenérzés sikertelen. Mivel a hibalzenetek az
argumentumoknak megfeleléen vannak formazva (pl., "bad argument #1"), ezek a
flggvények nem hasznalhatéak mas verem értékek esetén.

4.1 - Figgvények és tipusok

A kovetkez6kben szerepelnek a segédkdnyvtar fliggvényei és tipusai, ABC
sorrendben.

lual_addchar

void lual._addchar (lual_Buffer *B, char c);

A c karaktert a B bufferhez adja (l4sd 1uar_Buffer).

lual._addlstring

void lual_addlstring (lual_Buffer *B, const char *s, size_t 1);

Az s altal mutatott, 1 hosszlusagu karakterlancot a & bufferhez adja (lasd
1ual_Buffer). A karakterlanc tartalmazhat beagyazott zérdkat.

lual._addsize

void lual._addsize (lual_Buffer *B, size_t n);

Egy el6zbleg a buffer teriiletre masolt (lasd 1ual_prepbuffer) n hosszUsagu
karakterlancot a B bufferhez adja (lasd 1uar_Buffer).

lual_addstring

void lual_addstring (lual_Buffer *B, const char *s);

Az s altal mutatott zérévégl karakterlancot a s buffehez adja (lasd 1uar_puffer). A
karakterlanc nem tartalmazhat beagyazott zérékat.

lual_addvalue

void lual_addvalue (lual_Buffer *B);

A verem tetején 1évd értéket a B bufferhez adja (lasd 1ua1,_surfer). Az értéket kiemeli
a verembdl.

Ez az egyetlen olyan karakterlanc-buffer mivelet, amely hivasakor extra elemet var a
veremben, méghozza a bufferhez adandé értéket.

lual._argcheck

void lual_argcheck (lua_State *L,
int cond,
int numarg,

const char *extramsq);

Ellendrzi, hogy a megadott cond feltétel igaz -e. Ha nem, egy hibat ér el a kovetkez6
hibalzenettel, ahol func a hivé verembdl szarmazik:

bad argument #<numarg> to <func> (<extramsg>)

lual._argerror
int lual_argerror (lua_State *L, int numarg, const char *extramsqg);

Egy hibat ér el a kdvetkezd Gzenettel, ahol func a hivo verembdl szarmazik:

bad argument #<numarg> to <func> (<extramsg>)

A fliggvény soha nem tér vissza, mivel ez egy olyan kifejezés, amely C
nggvényekben a kovetkezdként hasznalhatd: return lual_argerror (args).

lual_Buffer

typedef struct lual_Buffer lual_Buffer;
A karakterlanc buffer tipusa.

Egy karakterlanc buffer lehetévé teszi a C nyelvben Lua karakterlancok létrehozasat.
Hasznélatéra a kdvetkez8k vonatkoznak:

o El6sz6r deklaralni kell 1uar_puffer tipusu b valtozét.

e Ezutan el6 kell késziteni azt a 1ual_buffinit (L, s&b) hivassal.

» Ezutan a karakterlanc darabijait hozza kell adni a bufferhez valamelyik
1ual_add* flggvénnyel.

o Végul meg kell hivni @ 1ual_pushresult (sb) flggvenyt. Ez a hivas a verem
tetején hagyja a kész karakterlancot.

A normal mlveletek kézben a karakterlanc buffer valtozé6 szamua verem helyet
hasznal. igy, amig egy buffer hasznalatban van, nem lehet tudni, pontosan hol van a
verem teteje. A verem a sikeres buffermivelet-hivasok kdzott hasznalhaté, feltéve,
ha azok kiegyensulyozottak; azaz egy buffermivelet hivasakor a verem azonos
szinten van, mint az el6z6 buffermivelet el6tt. (az egyetlen kivétel ez alél a szabaly
alél a luaL_addvalue). A lual_pushresult hivasa utan a verem visszatér az
el6készités elétti szintre, plusz a verem tetején lesz a kész karakterlanc.

lual_buffinit

void lual_buffinit (lua_State *L, lual_Buffer *B);

El6késziti a & buffert. A flggvény nem foglal le helyet; a buffert valtozéként kell
deklaralni (|éSd luaL_Buffer).

lual_callmeta

int lual_callmeta (lua_State *L, int obj, const char *e);
Meghiv egy metaeljarast.

Ha az obj indexnél Iévé objektumnak van metatdmbje, és ennek van e mezéje, ez a
flggvény meghivja ezt a mez6t és az objektumot adja egyetlen argumentumaul.
Ebben az esetben a flggvény visszatérési értéke 1 €s a verembe helyezi a hivasbdl
visszatérd értéket. Ha nincs metatdémbje, vagy nincs ilyen metaeljarasa, a fliggvény
visszatérési értéke 0 (és semmit nem helyez el a veremben).

lual._checkany

void lual_checkany (lua_State *L, int narg);

Ellendrzi, hogy a flggvénynek van -e valamelyik tipusu argumentuma (beleértve a
nil-t is) narg pozicidéban.

lual_checkint

int lual_checkint (lua_State *L, int narqg);

Ellendrzi, hogy a narg poziciéban I1évé argumentum szam -e, és visszatérési értéke
ez a szam int formaban.

lual._checkinteger

lua_Integer lual_checkinteger (lua_State *L, int narqg);

Ellendrzi, hogy a narg poziciéban I1évé argumentum szam -e, és visszatérési értéke
€z a Szam lua_Integer formaban.

lual_checklong

long lual_checklong (lua_State *L, int narg);

Ellendrzi, hogy a narg poziciéban Iévé argumentum szam -e, és visszatérési értéke
€z a szam long formaban.

lual._checklstring

const char *lual_checklstring (lua_State *L, int narg, size_t *1);

Ellendrzi, hogy a narg poziciéban l1évé argumentum karakterlanc -e, és ezzel tér
vissza; ha 1 nem nuLL, 1 értéke a karakterlanc hossza lesz.

lual_checknumber

lua_Number lual_checknumber (lua_State *L, int nargqg);

Ellendrzi, hogy a narg poziciéban 1évé argumentum szam -e, és ezzel tér vissza.

lual_checkoption

int lual_checkoption (lua_State *L,
int narg,

const char *def,

const char *const 1lstl[]);

Ellendrzi, hogy a narg argumentum karakterlanc -e, és megkeresi ezt a 1st tdmbben
(amelynek NULL-végz&désiinek kell lennie). Visszatérési értéke az az index, ahol a
karakterlanc talalhaté a témbben. Egy hibat ér el, ha az argumentum nem
karakterlanc, vagy a karakterlanc nem talalhato.

Ha a def nem ~uLL, a fliggvény a der értékét hasznalja alapértelmezett értékként, ha
nincs narg argumentum, vagy annak értéke nil.

Ez féleg akkor hasznos, ha karakterlancokat akarunk megfeleltetni C felsoroldsnak
(enum). (a Lua figgvénykényvtarakban megallapodas, hogy karakterlancokat kell
hasznalni szamok helyett a lehetéségek kivalasztasakor.)

lual. checkstack

void lual_checkstack (lua_State *L, int sz, const char *msqg);

A verem méretét top + sz elemUre bdviti, hibat ér el, ha a verem nem novelhetd
akkorara. Az nsg egy kiegészité Uzenet, amely a hibalizenetben fog szerepelni.

lual._checkstring

const char *lual_checkstring (lua_State *L, int narg);

Ellendrzi, hogy a narg poziciéban l1évé argumentum karakterlanc -e, és ezzel tér
vissza.

lual._checktype

void lual_checktype (lua_State *L, int narg, int t);

Ellendrzi, hogy a narg poziciéban 1évé argumentum t tipusu -e.

lual. checkudata

void *lual_checkudata (lua_State *L, int narg, const char *tname);

Ellendrzi, hogy a narg poziciéban lévé argumentum tname tipust userdata -e (lasd
luaL_newmetatable)

lual_dofile

int lual_dofile (lua_State *L, const char *filename);

Betdlti és futtatja a megadott fajlt. Ez a kdvetkezé makréként van definialva:
(lual_loadfile(L, filename) || lua_pcall(L, 0, LUA_MULTRET, 0))

Visszatérési értéke 0, ha nem volt hiba, illetve 1 valamilyen hiba esetén.

lual._dostring

int lual_dostring (lua_State *L, const char *str);

Betolti és futtatja a megadott karakterlancot. Ez a kévetkez6 makroként van
definialva:

(lual_loadstring (L, str) || lua_pcall(L, 0, LUA_MULTRET, 0))

Visszatérési értéke 0, ha nem volt hiba, illetve 1 valamilyen hiba esetén.

lual._error

int lual_error (lua_State *L, const char *fmt, ...);

Elér egy hibat. A hibatizenet formatumat a fmt és annak extra argumentumai
szablydk meg, a 1ua_pushfstring Szabalyainak megfeleléen. A hibalizenet elejére
keril a fajlnév és a sor szama, ahol a hiba tértént, ha ez az informacioé elérheté.

A fliggvény soha nem tér vissza, mivel ez egy olyan kifejezés, amely C
nggvényekben a kovetkezdként hasznalhatd: return lual_error (args).

lual._getmetafield

int lual_getmetafield (lua_State *L, int obj, const char *e);

Az opj indexen 1évd objektum metatémbjének e mezjét helyezi a verembe. Ha az
objektumnak nincs metatémbje, vagy annak nincs ilyen mezéje, visszatérési értéke
0, és nem helyez semmit a verembe.

lual._getmetatable

void lual_getmetatable (lua_State *L, const char *tname);

A verembe helyezi a registryben a tname névhez tarsitott metatémbét (lasd
luaL_newmetatable)

lual._gsub

const char *lual_gsub (lua_State *L,
const char *s,

const char *p,

const char *r);

Elkésziti az s karakterlanc masolatat, amelyben a p karakterlanc 6sszes
el6fordulasat r karakterlancra cseréli. A verembe helyezi a kész karakterlancot, majd
azzal tér vissza.

lual_loadbuffer

int lual_loadbuffer (lua_State *IL,
const char *buff,

size_t sz,

const char *name);

A megadott buffert lua csonkként télti be. A fliggvény a 1ua_1o0ad-ot hasznélja a bufr
altal mutatott sz méreti buffer csonkba téltéséhez.

A flggvény ugyanazokkal az eredményekkel tér vissza, mint a 1ua_load. A name @
csonk neve, amely hibakeresé informacidknal Is hibalizeneteknél van hasznalatban.

lual_loadfile

int lual_loadfile (lua_State *L, const char *filename);

A megadott fajlt Lua csonkként télti be. A fliggvény a 1ua_1oad-ot hasznélja

a filename Nevl fajl csonkba toltéséhez. Ha a filename értéke nuri, akkor az
alapértelmezett bemenetbdl tdlt be. Az elsé sor nem lesz figyelembe véve, ha az #
jellel kezdédik.

A flggvény ugyanazokkal az eredményekkel tér vissza, mint a 1ua_10ad, azonban
van egy extra hibakddja is, Lua_srrr11LE, ha fajl nem nyithaté meg, vagy nem
olvashato.

A 1ua_load-hoz hasonléan, ez a fliiggvény csak betdlti a csonkot, de nem futtatja azt.

lual._loadstring

int lual_loadstring (lua_State *L, const char *s);

A megadott karakterlancot Lua csonkként télti be. A fliggvény a 1ua_1oad-ot
hasznalja a zéré-végz6dési s karakterlanc csonkba toltéséhez.

A figgvény ugyanazokkal az eredményekkel tér vissza, mint a 1ua_load.

A 1ua_load-hoz hasonldan, ez a fliggvény csak betdlti a csonkot, de nem futtatja azt.

lual_newmetatable

int lual_newmetatable (lua_State *L, const char *tname);

Ha a registry mar tartalmaz tname kulcsot, 0-val tér vissza. Egyéb esetben egy Uj
tdmbot készit, amely a userdata metatdémbje lesz, a registryhez adja tname kulccsal,
és 1-el tér vissza.

Mindkét esetben a verembe helyezi a registryben a tname kulcshoz rendelt értéket.

lual_newstate

lua_State *lual_newstate (void);

Egy Uj Lua allapotot készit, amelyhez a 1ua_newstate-t egy lefoglalé fliggvénnyel
hivia meg, amely a szabvanyos C real1oc fliggvényen alapszik, valamint beallit egy
panik fliggvényt (lasd 1ua_atpanic), amely az alapértelmezett hibakimeneten jeleniti
meg a hibailizenetet fatalis hiba esetén.

Visszatérési értéke az U] allapot, vagy nurt, ha memoria-lefoglalasi hiba tértént.

lual._openlibs

void lual_openlibs (lua_State *L);

Megnyitja az 6sszes szabvanyos Lua eljaraskényvtarat a megadott allapot szamara.

lual. optint

int lual_optint (lua_State *L, int narg, int d);

Ha a narg poziciéban lévé argumentum szam, visszatérési értéke ez a szam int
formaban. Ha ez az argumentum hianyzik, vagy nil, visszatérési értéke a. Egyéb
esetben hibat okoz.

lual. optinteger

lua_Integer lual_optinteger (lua_State *L, int narg, lua_Integer d);

Ha a narg poziciéban lIévé argumentum szam, visszatérési értéke ez a
szam 1ua_integer formaban. Ha ez az argumentum hidnyzik, vagy nil, visszatérési
értéke 4. Egyéb esetben hibat okoz.

lual. optlong

long lual_optlong (lua_State *L, int narg, long d);

Ha a narg poziciéban lévé argumentum szam, visszatérési értéke ez a szam 1ong
formaban. Ha ez az argumentum hianyzik, vagy nil, visszatérési értéke a. Egyéb
esetben hibat okoz.

lual._optlstring

const char *lual_optlstring (lua_State *L,
int narg,
const char *d,

size_t *1);

Ha a narg pozicidban lévé argumentum karakterlanc, azzal tér vissza. Ha ez az
argumentum hianyzik, vagy nil, visszatérési értéke 4. Egyéb esetben hibat okoz.

Ha 1 értéke nem nuLL, az *1 poziciét az eredmény hosszaval megegyez6 értékre
allitja.

lual._optnumber

lua_Number lual_optnumber (lua_State *L, int narg, lua_Number d);

Ha a narg pozicidban lévé argumentum szam, visszatérési értéke ez a szam. Ha ez
az argumentum hianyzik, vagy nil, visszatérési értéke 4. Egyéb esetben hibat okoz.

lual._optstring

const char *lual_optstring (lua_State *L, int narg, const char *d);

Ha a narg pozicidéban lIévé argumentum karakterlanc, azzal tér vissza. Ha az
argumentum hianyzik, vagy nil, visszatérési értéke 4. Egyéb esetben hibat okoz.

lual._prepbuffer

char *lual_prepbuffer (lual_Buffer *B);

Visszatérési értéke Luar_rurrersizE Méret helyének cimzése, ahova egy & bufferhez
adandoé karakterlanc masolhaté (lasd 1uar_puffer). Miutan a karakterlanc erre a
helyre lett masolva, meg kell hivni a 1ua1,_addsize fliggvényt a karakterlanc
méretével, hogy ténylegesen is a bufferbe kertljén.

lual_pushresult

void lual_pushresult (lual_Buffer *B);

Befejezi a B buffer hasznalatat, a kész karakterlancot a verem tetején hagyva.

lual_ref

int lual_ref (lua_State *L, int t);

Elkészit egy hivatkozast a + indexnél talalhat6 témbhéz, a verem tetején lévé
objektumhoz, és visszatér vele (kiemeli az objektumot a verembdl).

A hivatkozas egy egyedi egész tipusu kulcs. Amig manualisan nem kerllnek a t
tombbe egész tipusu kulcsok, a 1uar_ref megbizonyosodik a kulcsok
egyedulallésagardl visszatérés elétt. Egy r altal hivatkozott objektum lekérhetd
a lua_rawgeti (L, t, r) hivassal. A 1ua1_unrer flggvény felszabaditja a
hivatkozast, valamint a hozz4 tarsitott objektumot is.

Ha a verem tetején taldlhaté objektum nil, a 1ua1_ref visszatérési értéke
a Lua_RrREFNIL konstans. A Lua_norer konstans garantatan eltéré barmilyen 1uar_ref
altal visszatéré hivatkozastol.

lual._Reg

typedef struct lual_Reg {
const char *name;
lua_CFunction func;

} lual_Reg;

A lual_register altal regisztralando fliggvénytémbok tipusa. A name a fliggvény
neve, a func pedig egy mutatd a fliggvényhez. A 1ua1_reg minden témbjének egy
jelz6és bejegyzéssel kell végzédnie, ahol mind a name, mind a func értéke NULL.

lual._register

void lual_register (lua_State *L,
const char *libname,
const lual_Reg *1);

Megnyit egy eljaraskényvtarat.

Ha a 1ibname értéke nuLni, az 6sszes fliggvényt regisztralja az 1 listabdl (lasd
lual_Reg) a verem tetején lévé tdmbe.

Ha nem-null 1ibname argumentummal lesz meghivva, egy 0j t+ tdmbot készit, amelyet
a globalis 1ipname valtozd értékeként, valamint a package.loaded[1ibname]
értékekeént allitja be, és regisztralja az 6sszes fliggvényét az 1 listdban. Ha van ilyen
tdmb a package.loaded[1libname] Cimen, vagy a globalis 1ibname valtozdban, Ujra
felhasznalja ezt a tdombot ahelyett, hogy egy Ujat készitene.

A figgvény minden esetben a verem tetején hagyja a témbdot.

lual._typename

const char *lual_typename (lua_State *L, int idx);

A megadott idx indexen talalhaté érték tipusanak nevével tér vissza.

lual._typerror
int lual_typerror (lua_State *L, int narg, const char *tname);

A kovetkez6h6z hasonld hibalizenetet allit el6:

<location>: bad argument <narg> to <function> (<tname> expected, got
<realt>)

ahol <1ocation> @ lual_where-b0l szérmazik, a <function> a jelenlegi fuggvény
neve, és a <realt> az aktualis argumentum tipusanak neve.

lual_unref

void lual_unref (lua_State *L, int t, int ref);

Torli a ref hivatkozast a t indexen talalhaté tombbdél (lasd 1ua1_ref). A bejegyzés el
lesz tavolitva a tdombbél, igy a hivatkozott objektum is 6sszegyljthetd. A ref
hivatkozas szintén felszabadul, és Ujra felhasznéalhato.

Ha a ref értéke LUA_NOREF Vagy LUA_REFNIL, & lual_unref Nem csinal semmit.

lual_where

void lual_where (lua_State *L, int 1vl);

A verembe helyez egy karakterlancot, amely azonositja a vezérlés jelenlegi

Ve

kdvetkezd: <chunkname>:<currentline>:. A 0. szint a futd fuggvény, 1., amelyik hivta
a futo flggvényt, és igy tovabb.

Ez a flUggvény a hibalzenetek elétagjanak eléallitdsakor van hasznalatban.

5 - Szabvanyos fuggvenykonyvtarak

A Lua szabvanyos flggvénykdnyvtarai hasznos fliggvényeket biztositanak, amelyek
kdzvetlenll a C API-n keresztil vannak megvaldsitva. Ezek k6zil a figgvények kozil
néhany a nyelvben nélkildézhetetlen szolgaltatast biztosit (pl., type €S getmetatable);
masok "kiuls6" hozzaféréseket (pl., I/0); mig megint masok a Lua-ban magéaban

vannak megvalésitva, de ezek vagy kuléndsen hasznosak, vagy olyan Kkritikus
teljesitményigénylk van, hogy érdemes volt megvalésitani C-ben (pl., sort).

Az Gsszes flggvénykdnyvtar a hivatalos C API-n keresztiil, kilonbdzé C
modulokként lett megvalédsitva. Jelenleg a kévetkezd szabvanyos
flggvénykonyvtarak léteznek a Lua nyelvben:

alap figgvénykodnyvtar;

csomag flggvénykényvtar;
karakterlanc miveletek;

tdmb maiveletek;

matematikai figgvenyek (sin, log, stb.);
bemenet és kimenet;

operacios rendszer szolgaltatasok;
hibakeres6 szolgaltatasok.

Az alap és a csomag figgvénykdnyvtarakat leszamitva minden egyes
flggvénykdnyvtar fliggvényei egy globalis témb mez6éiként, vagy az objektumanak
eljarasaiként érhetéek el.

Ezeknek a fliggvénykdényvtaraknak az eléréséhez a C kliensprogramnak meg kell
hivnia a 1ual_openlibs flggvényt, amely megnyitja az dsszes alapértelmezett
flggvénykdnyvtarat. Lehetéség van arra is, hogy ezeket egyenként nyissuk meg a
kdvetkez6 hivasokkal: 1uaopen_base (az alap figgvénykdnyvtarhoz),
luaopen_package (@ csomag fliggvénykényvtarhoz), 1uacpen_string (a karakterlanc
flggvénykdnyvtarhoz), 1uaopen_table (a tdmb flggvénykdnyvtarhoz), 1uaopen_math
(a matematikai figgvénykényvtarhoz), 1uacpen_io (az I/O és operacios rendszer
flggvénykdnyvtarakhoz), €s 1uaopen_debug (a hibakeresé fliggvénykdnyvtarhoz).
Ezek a fliggvények a 1ualib.n fajlban vannak deklaralva, és kézvetlentl nem
hivhatéak meg: a tébbi Lua C fliggvényhez hasonléan mikddnek, pl., @ 1ua_call
hasznalataval hivhatéak meg.

5.1 - Alap fuggveények

Az alap flggvénykdnyvtar néhany alapvet6 fontossagu flggveényt biztosit a Lua
szamara. Ha ez az eljaraskdnyvtar nincs betéltve a programban, kilénésen 6vatosan
kell eljarni, hogy szikséges -e annak valamilyen szolgaltatasait megvalositani.

assert (v [, message])

Egy hibat okoz, amikor a v argumentum hamis (tehat nil vagy false); egyébként az
argumentumokkal tér vissza. A message egy hibaltizenet, ha nincs megadva, az
alapértelmezett Uzenet lesz hasznalva: "assertion failed!"

collectgarbage (opt [, argl)

A flggvény egy altalanos felliletet hoz létre a szemétgyjtéhdz. Az elsd, opt
flggvénytdl figgden kilénb6zé fliggvényeket hajthat végre:

"stop'": megallitjia a szemétgyjtét.

"restart": Ujraindtja a szemétgy(jtét.

"collect": elindit egy teljes szemétgylijté kort.

"count": a Lua altal haszndlt memoria pillanatnyi értékét adja vissza (Kbyte-

okban).

« "step": végrehajt egy nbvekményes szemétgyiljté-lépést. A Iépés méretét
az arg hatarozza meg (nagyobb érték mellett tébb 1épés) meghatarozatlan
mobdon. Ha a 1épés méretét szabalyozni akarod, az arg értékével kell
kisérletezni. Visszatérési értéke true, ha a lépéssel befejezéditt egy
szemétgyjté kor.

o "setpause": A gylijt6é sziinetét allitja be arg/100 értékre (lasd §2.10).

o "setstepmul”: A gyiijt6 lépésszorzdjat éllitja be arg/100 értékre (lasd §2.10).

dofile (filename)

Megnyitja az adott fajinevet, majd annak tartalmat Lua csonkként végrehaijtja. Ha
argumentumok nélkll van meghivva, az alapértelmezett bemenet (stdin) tartalmat
hajtja végre. A csonk 6sszes visszatérési értékével tér vissza. Hiba esetén a dofile
tovabbitja a hibat a hivonak (tehat a dori1e nem futtathaté védett modban).

error (message [, level])

Ledllitja az utoljara hivott védett fliggvényt, és a message argumentummal, mint
hibalzenettel tér vissza. Az error flggvény soha nem tér vissza.

Legtébb esetben az error a hibalizenet elejére fliz valamilyen informéaciét a hiba
helyérél. A 1eve1 argumentum adja meg, hogyan legyen lekérve a hiba helye. Az 1-
es érték (alapértelmezett érték) esetén a hiba helye az, ahonnan az error fliggvény
meg lett hivva. 2-es érték esetén az, ahonnan az error-t meghivé figgvény meg lett
hivva, és igy tovabb. 0 érték esetén nem lesz kiegészité informacio adva a
hibaltzenethez.

_G

Egy olyan globalis valtozé (nem flggveny), amely a globalis kérnyezetet tartalmazza
(tehat, _c._c = _c). A Lua 6nmagaban nem hasznalja ezt a valtozét; az értékeinek
megvaltoztatdsa nem befolyasolja a kérnyezetet, és forditva (A kérnyezetek
megvaltoztatdsara a set fenv hasznalhaté.)

getfenv (f)

A megadott figgvény éaltal hasznalt kdrnyezettel tér vissza. Az ¢ lehet egy Lua
1-es szint az a fliggvény, amely meghivta a get fenv flggvényt. Ha a megadott
flggvény nem Lua fliggvény, vagy r értéke 0, a get fenv visszatérési értéke a
globdlis kdérnyezet. Az r alapértelmezett értéke 1.

getmetatable (object)

Ha a megadott ocbject objektumnak nincs metatémbje, visszatérési értéke nil.
Egyébként, ha az objektum metatdmbjének van "__metatable" mezbje, akkor az
ahhoz tarsitott értékkel tér vissza. Egyéb esetben a megadott objektum
metatémbjével tér vissza.

ipairs (t)

Harom értékkel tér vissza: eqy iterator fliggvénnyel, a + tdmbbel és 0-val, igy a
kévetkezd szerkezet:

for i,v in ipairs(t) do body end

a(i,tr11), (2,t121), 7, parokon fog végigiteralni, az elsé nem létez6 egész tipusu
kulcsig.

A bejaras kdzbeni értékvaltoztatas veszélyeirdl 1asd a next fliggvény leirasat.

load (func [, chunkname])

Betdlt egy csonkot a func fliggvény segitségével, amely megadja annak darabjait.
Minden egyes func hivasnak olyan karakterlanccal kell visszatérnie, amely ésszefiizi
az el6zd eredményeket. nil (vagy hidnyzo6 érték) visszatérése jelzi a csonk végét.

Ha nem t6rténik hiba, visszatérési értéke a leforditott csonk fliggvényként; egyéb
esetben nil és a hibalizenet. A visszatér6 fliggvény kdrnyezete a globalis kdrnyezet.

A chunkname argumentum nevet ad a csonknak, amely a hibatzenetekben, valamint
hibakereséskor van hasznalatban.

loadfile ([filename])

A 10ad-hoz hasonl6éan mikédik, de a csonkot a megadott fi1ename fajlbdl, vagy
ennek hianydban az alapértelmezett bementrél télti be.

loadstring (string [, chunkname])

A 10ad-hoz hasonldéan miikddik, de a csonkot a megadott karakterlancbal télti be.

A megadott kifejezés betdltésére és végrehajtasara a kdvetkezb kifejezés
hasznalhaté:

assert (loadstring (s)) ()

next (table [, index])

Egy témb 6sszes mezéjének bejarasara hasznalhat6. Az elsé argumentuma a toémb,
a masodik pedig a tdbmb egy indexe. A next visszatérési értéke a tdmb kdvetkezd
indexe, és a hozza tartoz6 érték. Ha masodik argumentuma nil, a visszatérési érték
a kezdd index, és az ahhoz tarsitott érték. Ha az utolsé indexszel van meghivva,
vagy nil-el egy Ures témbdn, a visszatérési érték is nil. Ha a masodik argumentum
hianyzik, akkor az nil-nek lesz kiértékelve. A next (t) kifejezés arra is hasznalhato,
hogy meggy6zédijink arrdl, hogy egy témb Ures -e.

Az indexek szamlalasanak sorrendje nincs meghatarozva, még szam-indexek esetén
sem. (Egy tdmb sorrendben térténd bejaradsara a numerikus for ciklus vagy
az ipairs fliggvény hasznalhato.)

A next viselkedése meghatarozatlanna valik, ha a bejaras kézben egy nem létez6
mez6hdz érték adodik. A létezé mezék azonban mddosithatdak, sét térdlhetbek is.

pairs (t)

Harom visszatérési értéke van: a next flggvény, a t tdmb, és nil, igy a kbvetkez6
szerkezet:

for k,v in pairs(t) do body end
a t tdmb Osszes kulcs-érték parjan vegigiteral.

A bejaras kdzbeni értékvaltoztatas veszélyeirdl 1asd a next fliggvény leirasat.

VVV)

pcall (f, argl,

Védett mddban hivia meg az r fliggvényt a megadott argumentumokkal. Ez azt
jelenti, hogy a fuaggvényen bellli hibdk nem lesznek tovabbitva; ehelyett a pca11

elkapja a hibat, és egy allapotkdddal tér vissza. Az elsé visszatérési érték egy
boolean tipusu allapotkdd, amely igaz, ha a hivas hiba nélkil fejezédik be. Ebben az
esetben a hivas visszatérési értékei is visszatérnek az els6 utan. Hiba esetén a
visszatérési érték false, valamint a hibalzenet.

VVV)

print (

Barmennyi argumentumot kaphat, és az értékeiket irja ki a stdout-ra. Az
argumentumokat a tostring flggvény alakitja karakterlacokka. A print nem
formazott kimenet készitésére szantédk, csak egy olyan gyors lehetéség, amellyel
bizonyos értékek gyorsan megtekinthetéek, féleg hibakeresési céllal. Forméazott
kimenethez a string. format hasznalhato.

rawequal (v1, v2)

Barmilyen metaeljards meghivasa nélkil ellenérzi, hogy v1 és v2 értéke megegyezik
-e. Visszatérési értéke boolean.

rawget (table, index)

Barmilyen metaeljaras meghivasa nélkil lekéri a tavie[index] valddi értekét. A
table csak tdmb lehet, mig az index barmilyen érték.

rawset (table, index, value)

Barmilyen metaeljards meghivasa nélkil vaiue értékre allitja a table[index] valddi
értékét. A table csak tdmb lehet, index barmilyen nil-t6l kilénbdz6 érték, vaiue
pedig barmilyen Lua érték.

A flggvény visszatérési értéke a tabie tdmb.

VVV)

select (index,

argumentumok utani 6sszes argumentum. Egyébként az index értéke csak a "#"
karakterlanc lehet: ekkor a se1ect a megkapott extra argumentumok szamaval tér
vissza.

setfenv (£, table)

A megadott figgvény altal hasznalt kdrnyezetet cseréli le. Az ¢ lehet egy Lua

s sz

1-es szint az a flggvény, amely meghivta a set frenv fliggvényt. Visszatérési értéke a
megadott fliggvény

Abban az esetben, amikor r értéke 0, a set fenv a futd szal kérnyezetét valtoztatja
meg. Ebben az esetben nincs visszatérési érték.

setmetatable (table, metatable)

A megadott tabla metatdémbijét allitja be. (A tdbbi tipus metatémbje nem valtoztathatd
meg a Lua-bdl, csak a C-bél.) Ha a metatable értéke nil, térli a megadott tdmb
metatdmbjét. Ha az eredeti tablanak van "__metatable" mezdje, hiba keletkezik.

A flggvény visszatérési értéke a tabie tdmb.

tonumber (e [, base])

Megproébalja a megadott argumentumot szamma alakitani. Ha az argumentum mar
szam, vagy olyan karakterldnc, amely szamma alakithato, akkor visszatérési erték ez
a szam, egyéb esetben nil.

Az opciondlis paraméter adja meg a szam feldoglozasanak szamrendszerét. Ez 2 és
36 kbzotti egész szam lehet. A 10 feletti szamrendszereknél az 'a' (kis- vagy
nagybetls formaban is) 10-et jelent, '8' 11-et, és igy tovabb, mig 'z' 35-6t. A 10-es
szamrendszernél (az alapértelmezett értéknél), a szamnak lehet tértrésze valamint
hatvanykitevdje is (lasd §2.1). A tObbi szamrendszer csak el6jel nélkili egész tipust
fogad el.

tostring (e)

Barmilyen tipusu argumentumot kaphat, és ezt konvertélja elfogadhat6é formatumu
karakterlancca. A szamok konvertalasanak teljes leirasahoz l1asd: string. format.

Ha az e metatdmbjének van "__tostring" mezdje, akkor a tostring a hozzatartozé
értéket hivja meg, e argumentummal, és az eredménye lesz ennek a hivasnak az
eredménye.

type (v)

Visszatérési értéke az egyetlen argumentumanak tipusa, karakterlanc formaban. A
flggvény lehetséges eredményei: "ni1" (karakterlanc, és nem nil érték), "numper",

"string","boolean","table","function","thread% €s "userdata".

unpack (list [, i [, 311)

Visszatérési értékei a megadott tdmb elemei. A figgvény megegyezik a kdvetkezé
kifejezéssel:

return list[i], list[i+1l], , list[7]

kivéve, hogy a fenti kdd csak meghatarozott szamu elem esetén hasznalhato.
Alapértelmezés szerint i értéke 1 és j értéke a hossz operator altal meghatarozott
listahossz (lasd §2.5.5).

_VERSION

Egy globalis valtozé (nem fliggvény), amely a jelenlegi feldolgozé verziészamat
tartalmazza. A valtozé jelenlegi tartalma: "tua 5.1"

xpcall (f, err)
A figgvény hasonl6 a pca11-hoz, kivéve, hogy itt egy Uj hibakezel6 is beallithaté.

Az xpcal1 az f fliggvényt védett modban hivja meg, az err fliggvényt hasznélva
hibakezel6ként. Az £ fllggvényen beliili hibak nem lesznek tovabbitva, ehelyett az
xpcall elkapja a hibat, meghivja az err fliggvényt az eredeti hibaobjektummal, és
egy allapotkoddal tér vissza. Az elsd visszatérési érték egy boolean tipus, amelyik
igaz, ha a hivas hiba nélkil befejezédik. Ebben az esetben a hivas visszatérési
értékei is visszatérnek az els6 utan. Hiba esetén a visszatérési érték false, valamint
az err figgvény eredménye.

5.2 - Korutin kezelés

A korutinokhoz kapcsolédé miiveletek az alap fliggvénykényvtar alkbnyvtarahoz,
valamint a coroutine tdmbhdz tartoznak. A korutinok altalanos ismertetése a §2.11
fejezetben talalhaté.

coroutine.create (f)

Egy Uj korutint hoz Iétre, £ testtel. Az £ csak Lua fuggvény lehet. Visszatérési érteke
a "thread" tipusu Uj korutin.

coroutine.resume (co [, vall, “77])

Elkezdi, vagy folytatja a megadott co korutin futtatdsat. A korutin elsé folytatasakor
annak testét futtatja. A va11, = értékek a test-fliggvény argumentumaiként
szerepelnek. Ha a korutin szlineteltetve lett, a resume Ujrainditja azt; a vai1, ~

értékek a sziineteltetés eredményei.

vv

Ha a korutin hiba nélkll lefut, a resume visszatérési értéke true, valamint a yie1d-nek
atadott értékek (ha a korutin szlineteltetve van) vagy barmilyen értékek, amelyek a
test-figgvény visszatérési értékei (ha a korutin befejezédik). Hiba esetén a resume
visszatérési értéke false valamint a hibalizenet.

coroutine.running ()

Visszatérési értéke a futd korutin, vagy nil ha a f6 szalbdl lett meghivva.

coroutine.status (co)

Visszatérési értéke a co korutin allapota, karakterlanc alakban: "running", ha a
korutin fut (azaz, az hivta meg a status-t); "suspended", ha a korutin a yield
hivassal fel lett fliggesztve, vagy még nem lett elinditva; "norma1n, ha a korutin aktiv,
de nem fut (azaz, egy masik korutin folytatatta); valamint "aeada", ha a korutin
befejezte a test-flggvényt, vagy hibaba Utk6zoétt.

coroutine.wrap (f)

Egy Uj korutint hoz Iétre, r testtel. Az £ csak Lua flggvény lehet. Visszatérési érteke
egy flggvény, amely minden egyes hivaskor folytatja a korutint. A fliggvényhez
tarsitott argumentumok a resume extra argumentumai lesznek. Visszatérési értékei
megegyeznek a resume hivaséval, kivéve az elsé booleant. Hiba esetén tovabbitja a
hibat.

VVV)

coroutine.yield (

Felflggeszti a hivo korutin futtatdsat. A korutin nem futtathat C fliggvényt,
metaeljarast vagy iteratort. A yie1d argumentumai a resume extra visszatérési értékei
lesznek.

5.3 - Modulok

A csomag fuggvénykdnyvtar biztositja modulok betdltését és l1étrehozédsat a Lua-ban.
Két flggvénye kdzvetlenll a globalis kérnyezetbdl érhetb el: a require és a module.
Minden egyéb a package tdbmbben talalhato.

module (name [, ~771])

Egy modult készit. Ha a package.1loaded[name] tdmb mar létezik, ez a tdmb lesz a
modul. Egyébként ha létezik a megadott nevi globdlis t témb, az a témb lesz a
modul. Egyéb esetben egy lres t tdmbodt hoz Iétre, és a globalis name és a
package.loaded[name] €rtékekeént allitja be azt. A fliggvény szintén létrehozza a
t._NaMe mez6t a megadott névvel, a +._m mez6t a modullal (a t-vel magaval), és a
t._PAcCKAGE mez8t a csomag nevével (a teljes modulnévvel, minusz az utols6
komponens, lasd lentebb). Véglil, a moduie bedllitja a t-t, mint a jelenlegi figgvény Uj
kdrnyezetét, és a package.loaded[name] Uj €rtékeként, igy a require visszatérési
értéke t.

Ha a name egy vegyes név (tehat egyenként pontokkal elvalasztva), a module
tomboket készit (vagy Ujra felhasznal, ha mar Iéteznek) az egyes komponensek
szamara. Példaul, ha a name értéke a.o.c, akkkor a module a modult a globalis a
tdmb » mezéjének « mezéjében tarolja.

A flggvény kaphat options argumentumokat a modul neve utan, ahol minden egyes
opcib egy fuggvény, amelyet a modul hasznal fel.

require (modname)

Betolti a megadott modult. A fliggvény elészdr a package. 1oaded tdmboét vizsgélja
meg, hogy a megadott modname modul be van -e mar téltve.Ha igen, a require a
package.loaded [modname] értékével tér vissza. Egyébként megprébél egy betéltét
keresni a modulhoz.

Ha talal ilyet, d require végrehajtja a package.preload[modname] lekérést. Ha ennek
van értéke, ez lesz a betéltd (ami egy fuggvény). Egyébként a require egy Lua
betbltét keres a package.path valtozoban megadott Utvonalakon. Ha ez sikertelen,
akkor egy C betdltét, a package.cpath valtozédban megadott utvonalakon. Ha ez is
sikertelen, akkor egy minden-az-egyben betdlt6t prébal meg (lasd lentebb).

Egy C faggvénykényvtar betbltésekor a require egy dinamikusan kapcsolédo
készséget hasznél az alkalmazas és a flggvénykdnyvtar 6sszekapcsolasara. Ezutan
megprobal egy C fliggvényt keresni az eljaraskényvtaron belldl, amely betdltéként
hasznalhaté. Ennek a C fliggvénynek a neve "1uaopen_" karakterlanccal kezdédik, és
a modul nevével folytatédik, ahol minden pontot alahlzas helyettesit. Ezen felll, ha a
modul nevében van egy kétéjel, az elbtte 1évd rész (a kdtdjellel egyditt) el lesz
tavolitva. Igy példaul az a.vi-b.c név esetén a fliggvény neve 1uaopen_b_c lesz.

Ha a require nem talal sem Lua, sem C fliggvénykdnyvtarat a modulnak, akkor a
minden-az-egyben betdltét hivja meg. Ez a C dtvonalat vizsgélja at a megadott
modul téalaki nevii eljaraskonyvtaraért. igy példaul az a.».c név esetén a require
az a nevl C figgvénykonyvtarat fogja keresni. Ha talal ilyet, ebben keres egy
almodult, esetlinkban ez a 1uaocpen_a_b_c. Ezzel a lehetéséggel a csomagkezeld
tébb C almodult is egy fliggvénykdnyvtarba csomagolhat, amelyekben megmarad az
eredeti megnyit6 fliggvény.

Ha van betéltd, a require meghivja az a modname argumentummal. Ha a betdltének
van visszatérési értéke, d require A package.loaded[modname] értékeként é."llt]a be
azt. Ha nincs, és a package.loaded[modname] Mezének nincs értéke, akkor a require
a true értéket rendeli ehhez a bejegyzéshez. Barmilyen mas esetben a require
visszatérési értéke a package.loaded [modname] VEQSO értéke.

Ha a modul futtatasa kdzben hiba 1ép fel, vagy nem talalhaté betdlté a modulhoz, a
require hibat jelez.

package.cpath
A require altal hasznalt C betdlté utvonalat hatarozza meg.
A Lua a package.cpath értékét a package.path-hoz hasonléan hatarozza meg, a

Lua_cpaTh k@rnyezeti valtozé hasznalataval (valamint a masik, 1uacont.n fajlban
megadott utvonal segitségével).

package.loaded

A require altal hasznalt tdmb, a mar betdltdétt modulok ellenérzésére. A modname
modul bGté'téSGkOl’, ha a package.loaded[modname] NE€M hamis, d require
visszatérési értéke az ott tarolt érték.

package.loadlib (libname, funcname)

Dinamikusan 6sszekapcsolja a f6 programot a 1ioname nevi C fliggvénykdnyvtarral.
Ebben a fliggvénykényvtarban megkeresi a funcname fllggvényt, és ezzel tér vissza,
C faggvényként. (Tehat a funcname flggvénynek kbvetnie kell a protokollt (lasd

lua_CFunction)).

Ez egy alacsonyszint(fliggvény, amely teljesen eltér a csomag- és
modulrendszertél. A require-t6l eltéréen, nem hajt végre Gtvonal-kereséseket és
nem vesz fel automatikusan kiterjesztéseket. A 1ibname a C eljaraskényvtar teljes
neve kell hogy legyen, beleértve az utvonalat és a kiterjesztést is. A funcname a C
eljaraskonyvtar altal exportalt pontos név (ez a hasznalt C forditétdl és a linkel6tdl is

figQ).

Ez a fuggvény ANSI C-ben nincs tdmogatva. Mint ilyen, csak néhany platformon
elérheté (Windows, Linux, Mac OS X, Solaris, BSD, valamint az olyan Unix
rendszerek, amelyek tAmogatjak a d1fcn szabvanyt).

package.path
A require altal hasznalt Lua betdlté utvonalat hatarozza meg.

Inditaskor a Lua a Lua_path kdrnyezeti valtozo értékét rendeli hozza, vagy

a 1uaconf.h fajlban megadott alapértelmezett Utvonalat, ha a kérnyezeti valtozé
nincs megadva. A kérnyezeti valtozé értékében minden egyes "; ;" kifejezés az
alapértelmezett Utvonalra lesz cserélve.

Az Utvonal mintak sorozata, pontosvesszével elvalasztva. A require minden egyes
mintdban a kérdéjeleket a fi1ename-ra cseréli le, ami a modname értéke, ahol minden
egyes pont a "kGnyvtar elvalasztéra" lesz cserélve (mint pl. a "/" Unix rendszereken);
majd megproébalja betdlteni az igy kapott fajlnevet. Igy tehat, ha a Lua Gtvonal értéke
a kbvetkez6:

"./?.1lua;./?.1c; /usr/local/?/init.lua"

akkor a foo modul Lua betbltéje a kovetkezd fajlokat probalja meg betélteni:
./foo.lua, ./foo.lc, €S /usr/local/foo/init.lua, €bben a sorrendben.

package.preload

Egy témb, amely a modulok betdlt6it tartalmazza. (I1asd require).

package.seeall (module)

A module metatdmbjét allitja be, amelyben az __index mezd a globalis kérnyezetre
hivatkozik, igy ez a modul megdérokli a globalis kérnyezet valtozoit is. A module
flggvény bedllitasaként hasznalhato.

5.4 - Karakterlanc kezelés

Ez a fuggvenykdényvtar karakterlancok kezeléséhez biztosit altalanos fliggvényeket,
agy mint kisebb karakterlancok megtalalasa és kivonasa, valamint minta-illeszkedés.
A Lua nyelvben a karakterlancok indexelése 1-t6l kezdédik (és nem 0-t6l, mint C-
ben). Az indexek lehetnek negativak, ekkor hatulrél indexeléskent a karakterlanc
végétél szamitva lesz feldolgozva. Igy tehat az utolsé karakter pozicidja -1, és igy
tovabb.

A karakterlanc eljaraskényvtar 6sszes fliggvénye a st ring tdmb mezéiként érhetéek
el. A karakterlancoknak van metatémbije is, amelynek az __index mezje a string
tdmbre mutat. igy a karakterlanc-fliggvények objektum-orientalt formaban
hasznalhatbéak. Példaul a string.byte(s, i) kifejezés felirhatd s:byte (i) formaban
is.

string.byte (s [, i [, 311)

vvv
b

Visszatérési értékei az s1i1, s1i+11, ~, s[j] karakterek belsé numerikus kédjai.
Az i alapértelmezett értéke 1; a 5 értéke pedig i.

Jegyezzik meg, hogy a belsé numerikus kddok nem feltétlenil ugyanazok az egyes
platformokon.

VVV)

string.char (

Nulla vagy tébb egész tipusu argumentumot kap. Az argumentumok szamaval
megegyez6 hosszusagu karakterlanccal tér vissza, ahol minden egyes karakter belsé
numerikus kédja megegyezik a hozza tartoz6 argumentummal.

Jegyezzik meg, hogy a belsé numerikus kddok nem feltétlenil ugyanazok az egyes
platformokon.

string.dump (function)

Visszatérési értéke a megadott fliggvény binaris karakterlanc formaban, igy késébb a
loadstring hivas ezen a karakterlancon a fliggvény masolatat adja. A function csak
fels6értékek nélkili Lua figgvény lehet.

string.find (s, pattern [, init [, plain]])

Az s karakterlancban megkeresi a pattern €ls6é egyezését. Ha talal ilyet, a finda az s
indexeivel tér vissza, ahol az egyezés kezdédik, illetve végzddik; egyéb esetben a
visszatérési értéke nil. A harmadik, opcionalis szam alaku init argumentum adja
meg, hol kezdédjdén a keresés; az alapértelmezett értéke 1, és negativ is lehet. A
negyedik, opciondlis p1ain argumentum true értéke kikapcsolja a minta illeszkedési
lehetéségeket, azaz a flggveény egy sima "al-karakterlanc keresést" hajt végre, ahol
a pattern-ban egy karakter sem minésul "magikusnak”. Ha a p1ain meg van adva,
akkor az init-nek is értéket kell adni.

Ha a minta értékeket is kiemel, akkor ezek is visszatérnek, a két index utan.

string.format (formatstring,)

Visszatérési értéke az els6 (karakterlanc) argumentumban megadott formaba
atalakitott valtoz6 szamu argumentumok. A formatum a szabvanyos C fliggvények
print f cSaladjanak szabalyait kdveti. Az egyetlen kilénbség, hogy a
szabalyozék/modositok (+, 1, 1, n, p, €S h) nem tdmogatottak, valamint van egy extra
opcid, a q. Ez hasznalhat6 arra, hogy a karakterlancok biztonsagosan
visszaolvashatdak legyenek a Lua feldolgoz6 szamara: a karakterlancok dupla
idéz6jelek kdzé kerlilnek, és a karakterlancban minden dupla idézdjel, Ujsor karakter,
beagyazott nulla és backslash karakterek biztonsagos formatumura lesznek alakitva.
Példaul a

string.format ('$g', 'a string with "quotes" and \n new line')

hivas a kévetkez6 karakterlancot eredményezi:

"a string with \"quotes\" and \
new line"

Ac,4,8, e, f,q,G, 1, 0, u, X, €S x OPCIOK mind szamot varnak paraméterként, mig a q
és s karakterlancokat.

A figgvény nem fogad el olyan karakterlancot, amely beagyazott zérét tartalmaz.

string.gmatch (s, pattern)

Visszatérési értéke egy olyan iteracios fliggvény, amely minden hivasakor az s
karakterlanc egy Ujabb, pattern mintara illeszkedd részével tér vissza.

Ha a pattern nem emel ki értékeket, akkor minden hivaskor az egész egyezeés lesz
az eredmeény.

Példaul a kovetkez6 ciklus:

s = "hello world from Lua"

for w in string.gmatch(s, "%a+") do
print (w)

end

végigiteral az s karakterlanc szavain, majd soronként kiirja azokat. A kdvetkezé példa
a megadott karakterlanc ésszes key=value parjat egy témbbe gyjti 6ssze:

t = {}

s = "from=world, to=Lua"

for k, v in string.gmatch(s, " (%sw+)=(%w+)") do
t[k] = v

end

string.gsub (s, pattern, repl [, n])

Visszatérési értéke az s karakterlanc masolata, amelyben a pattern minta ésszes
illeszkedése le lett cserélve a megadott rep1 értékre, ami lehet karakterlanc, témb
vagy flggveény. A gsub masodik visszatérési érteke az elvégzett cserék szama.

Ha a rep1 karakterlanc, akkor annak értéke lesz a cserekifejezés. A < karakter
vezérlékarakterként mikddik: a rep1-ben szereplé minden sn formatumu kifejezés,
ahol n 1 és 9 koz6tti érték, az n. szamu kiemelt értéket adja vissza (lasd lentebb). A
50 kifejezés az egész egyezést adja vissza. A s kifejezés egy & karaktert jelent.

Ha a rep1 tdmb, akkor a témb minden egyezéskor le lesz kérdezve, ahol a minta lesz
a kulcs; ha a minta nem emel ki értéket, akkor az egész egyezeés lesz a kulcs.

Ha a rep1 fliggvény, akkor ez minden egyezéskor meg lesz hivva, argumentumai
pedig sorban az illeszked6 al-karakterlancok lesznek. Ha a minta nem emel ki
értéket, akkor az egész egyezés lesz az egyetlen argumentum.

Ha a tdmb-lekérdezés értéke vagy a fliggvény visszatérési értéke karakterlanc vagy
szam, az lesz a cserekifejezés, egyébként, ha az false vagy nil, nem térténik csere
(azaz, az eredeti egyezés a karakterlancban marad).

Az utolsé, opcionalis n paraméter a maximalis cserék szamat szabalyozza. Példaul,
ha n értéke 1, csak a pattern minta elsé illeszkedése lesz lecserélve.

Kbévetkezzen néhany példa:

x = string.gsub("hello world", " (%sw+)", "$1 %1")

——> x="hello hello world world"

x = string.gsub("hello world", "Ssw+", "%0 %0", 1)

——> x="hello hello world"

x = string.gsub ("hello world from Lua", " ($w+)%s* (sw+)", "%2 $1")

-—> x="world hello Lua from"

X = string.gsub ("home = $HOME, user = SUSER", "%$(%w+)", os.getenv)

——> x="home = /home/roberto, user = roberto"

x = string.gsub ("4+5 = Sreturn 4+5S$", "$S$(.-)%S$", function (s)
return loadstring(s) ()

end)

——> x="4+5 = 9"

local t = {name="lua", version="5.1"}

x = string.gsub ("$name%-$version.tar.gz", "$$(%w+)", t)

-——> x="lua-5.1l.tar.gz"

string.len (s)

Karakterlanc paramétert kap, €s a hosszaval tér vissza. Az " Ures karakterlanc
hossza 0. A beagyazott zérdk is beleszamitanak ebbe, igy a "a\ooobc\ooo"
karakterlanc hossza 5.

string.lower (s)

Karakterlancot kap, és a masolataval tér vissza, amelyben az 6sszes nagybeti
kicsire lesz cserélve. Minden egyéb karakter valtozatlan marad. A nagybetik
definiciéja a nyelvi beallitasoktdl fliggben eltérd lehet.

string.match (s, pattern [, init])

Az s karakterlancban megkeresi a pattern minta elsé egyezését. Ha talal ilyet, akkor
a match a talalt részekkel tér vissza; egyéb esetben a visszatérési érték nil. Ha

a pattern minta nem emel ki értéket, az egész egyezés visszatér. A harmadik,
opciondlis szam argumentum, az init adja meg, hol kezd6djén a keresés; az
alapértelmezett értéke 1, és negativ is lehet.

string.rep (s, n)

Visszatérési értéke a megadott s karakterlanc n szamu 6sszeflizétt masolata.

string.reverse (s)

Visszatérési értéke az s karakterlanc forditottja.

string.sub (s, i [, 3jl)

Visszatérési értéke az s karakterlanc része, amely i indexnél kezdédik és -ig tart; i
és j is lehet negativ. Ha a ; nincs megadva, -1-ként lesz értelmezve (ami
megegyezik a karakterlanc hosszaval). Altalanossagban, a string.sub (s, 1,) hivas
az s j hosszusagu elétagjaval, mig a string.sub(s, -i) hivas az s i hosszusagu
utétagjaval tér vissza.

string.upper (s)

Karakterlancot kap, és a masolataval tér vissza, amelyben az 6sszes kisbetl nagyra
lesz cserélve. Minden egyéb karakter véltozatlan marad. A kisbetik definicioja a
nyelvi beallitasoktdl fliggben eltérd lehet.

5.4.1 - Mintak

Karakterosztalyok:

Eqgy karakterosztaly karakterek sorozatat jelenti. A kovetkez6é kombinacidk
karakterosztalyokat irnak le:

x: (ahol x nem magikus karakter: ~s ()%. [1*+-2) az x karaktert jelenti.

.: (egy pont) minden karakternek megfelel.

sa: minden betlinek megfelel.

sc: minden vezérl6karakternek megfelel.

sd: minden szamjegynek megfelel.

$1: minden kisbetlis betlinek megfelel.

sp: minden irasjelnek megfelel.

ss: minden sz6kdz karakternek megfelel.

su: minden nagybetls betlinek megfelel.

sw: minden alfanumerikus karakternek megfelel.

sx: minden hexadecimalis szamjegynek megfelel.

sz: 0-szor el6forduld karakternek felel meg.

sx: (ahol x barmilyen nem alfanumerikus karatker) az x karakternek felel meg.
Ez a magikus karakterek semlegesitésének alapértelmezett médja. Barmilyen
irasjelet (még a nem magikusakat is) megelézhet a semlegesitd 's' karakter;
ebben az esetben a mintaban sajat magat fogja jelenteni.

[sorozat]: A megadott sorozat 6sszes karakterének unibjaval képez egy
osztalyt. Karakterek tartomanya megadhaté a tartoméany zaré karakterének '-'
jellel térténé elvalasztasaval. Minden s x formatumau fentebb leirt osztaly
hasznalhatd a sorozat elemeként. Az §sszes tdbbi karakter sajat magat jelenti.
Példaul, a (sw_1 (vagy a [_sw]) az 6sszes alfanumerikus karaktert és az
alahuzast fogja jelenteni, a [0-7] oktalis szamjegyeket, a (0-751%-] az oktalis
szamjegyeket, kisbetlis betiiket, valamint a '-' karaktert jelenti.

A tartomanyok és az osztalyok kdzbtt nincsen egyuttmikédés, tehat a (sa-z]
vagy [a-%%] alaku minta nem értelmezheté.

[~sorozat]: A megadott sorozat komplementerét (kiegészitését) jelenti, ahol a
sorozat a fentebb leirtak szerint van értelmezve.

Az 6sszes osztalyt, amit egy beti jeldl (sa, sc, stb.), a nagybetis alakja az osztaly
komplemeterét (kiegészitését) jelenti. Példaul, az ss minden nem-székdz karakternek
megfelel.

A betll, sz6kdz és egyéb karaktercsoportok definicidja mindig a nyelvi beallitasoktdl
fligg. A gyakorlatban az [a-z] osztaly nem minden esetben ugyanaz, mint a s1.

Minta elem:

Egy minta elem lehet

» egy karakterosztély, amely az osztaly barmely egyetlen karakterével
megegyezik;

» egy karakterosztaly, amit egy '+' jel kbvet, amely az osztaly karaktereinek 0
vagy tébb ismétlédésével egyezik meg. Ez az ismétlédés mindig a lehetd
leghosszabb sorozattal fog megegyezni;

» egy karakterosztaly, amit egy '+' jel kbvet, amely az osztaly karaktereinek 1
vagy tébb ismétlédésével egyezik meg. Ez az ismétlédés mindig a lehetd
leghosszabb sorozattal fog megegyezni.

» egy karakterosztaly, amit egy '-' jel kbvet, amely az osztaly karaktereinek
szintén 0 vagy tébb ismétlédésével egyezik meg. Viszont a '+ jellel
ellentétben, ez az elemismétlédés mindig a lehetd legrévidebb sorozattal fog
megegyezni;

o egy karakterosztaly, amit egy "' jel kbvet, amely az osztaly karaktereinek 0
vagy 1 ismétlédésével egyezik meg;

e 3n,ahol n1 és 9 kdzotti szam; az ilyen elemek az n-dik szdmu kiemelt értéket
adja vissza (lasd lentebb);

e sbxy, ahol x és y két killdnbdzd karakter; az ilyen elemek olyan
karakterlancokkal egyeznek meg, amelyek x-el kezd6dnek és y-al végzddnek,
és ahol x és y kiegyensulyozott. Ez azt jelenti, hogy a karakterlanc balrél
jobbra lesz olvasva, és az x-ek esetén +7-el ndvekszik, y-ok esetén -71-el
csdkken egy szamlalo, a végsé y az elsé olyan y, ahol a szamlaloé eléri a 0-t.
Példaul a sb () elem kiegyenlitett zardjelekkel egyezik meg.

Minta:

A minta mintaelemek sorozata. A '~'jel a minta elején megszabja, hogy a minta csak
a keresendd karakterlanc elejét, mig a 's' jel a minta végén azt, hogy a keresendé
karakterlanc végét vizsgélja. Mas poziciékban a '~' és 's' jeleknek nincs specialis
jelentésiik, és sajat magukat reprezentaljak.

Kiemelt értékek:

A mintak tartalmazhatnak olyan almintakat, amelyek zarojelek k6zott vannak; ezek
kiemelt értékeket jelentenek. Ha egy egyezés sikeres, a keresend6 karakterlanc
egyez6 al-karakterlancai eltaroldénak (kiemelédnek) késébbi hasznalatra. A kiemelt
értékek a nyitd zarojelek sorrendje szerint vannak szdmolva. Példaul a

"(ax (.)%w(%s*)) " minta esetén a karakterldncban a "a* (.) sw(ss*) " mintara egyezé
rész az elsd kiemelt érték (és a szama 1); A "."-ra illeszkedd karakter 2-es szammal
lesz kiemelve, és a "ss+"-ra illeszkedd rész a 3-as.

Egy specialis eset, amikor Ures kiemelés () térténik, ez esetben a visszatérési érték
a jelenlegi karakterlanbeli pozicid (egy szam). Példaul, az " ()aa ()" minta a "f1aaap"
karakterlancon két eredményt hoz: 3 és 5.

A minta nem tartalmazhat beagyazott zérékat, helyette a sz hasznalhatd.

5.5 - Tomb kezelés

Ez a fuggvenykoényvtar tdombok kezeléséhez biztosit altalanos fliggvényeket. A
flggvényei a tabie tdmb mezdiként érhetdek el.

Ennek az eljaraskdényvtarnak a fliggvényei csak rendezett tdémbdkon és listakon
mikddik. Ezeknél a figgvényeknél, ha a tomb "hosszarol" van szd, akkor a hossz
operator eredménye értendd ezalatt.

table.concat (table [, sep [, i [, 3j111)

Visszatérési értéke table[i]..sep..table[i+1l] ~~ sep..table[7]. A sep
alapértelemezett értéke az Ures karakterlanc, az i értéke 1, és a j alapértelmezett
értéke a tdmb hossza. Ha az i értéke nagyobb, mint 5, Ures karakterlanccal tér
vissza.

table.insert (table, [pos,] value)

A megadott vaiue értéket elhelyezi a tab1e tdbmbben, pos pozicidban, a tébbi elemet
felfelé szabad helyre csusztatva, ha sziikséges. A pos alapértelmezett értéke n+1,
ahol n értéke a tdmb hossza (lasd §2.5.5), igy a table.insert (t,x) hivas az x
értéket a + tdomb végére helyezi.

table.maxn (table)

Visszatérési értéke a tdmb legmagasabb numerikus indexe, vagy zéro, ha a tdémbnek
nincsenek pozitiv numerikus indexei. (a figgvény ehhez linearis bejarast hajt vegre
az egész tablan.)

table.remove (table [, pos])

A tab1e tdmbbdl eltavolitja a pos poziciéban 1évd elemet, a tdbbi elemet lefelé
szabad helyre csusztatva, ha szikséges. Visszatérési értéke az eltavolitott elem
értéke. A pos alapértelmezett értéke n, ahol n a tdmb hossza, igy a table.remove (t)
hivas a t tdmb utols6 elemét tavolitja el.

table.sort (table [, comp])

A tdmbdt a megadott sorrend szerint rendezi, belséleg, table[11-18l table [n]-ig, ahol
n a témb hossza. Ha a comp adott, akkor annak egy fliggvénynek kell lennie, ami két
tablaelemet kap argumentumként, és true értékkel tér vissza, ha az elsé kisebb, mint

a masodik (igy tehat a not comp(a[i+1],a[i]) igazza valik a rendezés utan). Ha
a comp NiNcs megadva, akkor az alapértelmezett < Lua operator lesz hasznalatban.

A rendezési algoritmus nem éallandd, tehat még az egyenlének értékelt elemek relativ
poziciéja is megvaltozhat a rendezés kdzben.

5.6 - Matematikai fuggveények

Ez a flUggvénykdnyvtar az alapértelmezett C matematikai fllggvénykdnyvtarat
valésitja meg. A fliggvényei a matnh tdbla mezdéiként érhetdek el.

math.abs (x)

Az x abszolutértékével tér vissza.

math.acos (x)

Az x arc cosinus-aval tér vissza (radianokban).

math.asin (x)

Az x arc sinus-aval tér vissza (radianokban).

math.atan (x)

Az x arc tangensével tér vissza (radianokban).

math.atan2 (x, y)

Visszatérési értéke az x/y arc tangense (radianokban), de mindkét paraméter eléjelét
hasznalja az eredmény quadransanak meghatarozasahoz. (Szintén megfeleléen
kezeli azt, ha az y értéke zéro.)

math.ceil (x)

Visszatérési értéke a legkisebb egész, amely nagyobb, vagy egyenld, mint x.

math.cos (x)

Az x cosinus-aval tér vissza (a fok radidnban van megadva).

math.cosh (x)

Az x hiperbolikus cosinus-aval tér vissza.

math.deg (x)

A radianokban megadott x értékével tér vissza fokokban.

math.exp (x)

Visszatérési értéke e*.

math.floor (x)

Visszatérési értéke a legnagyobb egész, amely kisebb, vagy egyenld, mint x.

math. fmod (x, y)

Visszatérési értéke az x y-al vald osztasabdl szarmazo maradék.

math. frexp (x)

Visszatérési értéke m és e a x = m2° kifejezésbdl, « egy egész, és az m abszolitértéke
a [0.5, 1) tartomanyban (vagy zérd, ha x zéro).

math.huge

A nuce_vaL értéke, egy érték, amely nagyobb vagy egyenld, mint barmilyen mas
numerikus érték.

math.ldexp (m, e)

Visszatérési értéke m2° (e egész tipusu).

math.log (x)

Visszatérési értéke x természetes logaritmusa.

math.logl0 (x)

Visszatérési értke x 10-es alapu logaritmusa.

vvv)

math.max (x,

Az argumentumok legmagasabb értékével tér vissza.

VVV)

math.min (x,

Az argumentumok legalacsonyabb értékével tér vissza.

math.modf (x)

Két értékkel tér vissza, x egész és tort értékével.

math.pi

A Pl értéke.

math.pow (x, y)

Visszatérési értéke x. (Az érték kiszamitasara az =~y kifejezés is hasznalhato.)

math.rad (x)

Visszatérési értéke a fokokban megadott x sz6g értéke radianban.

math.random ([m [, n]])

Ez a flUggveény egy latszdélagos véletlenszam generatort valdsit meg a randa ANSI C
flggvény segitségével. (A statisztikai tulajdonsagaira nincs garancia.)

Argumentumok nélklli hasznalat esetén a visszatérési érték egy véletlenszer(valds
szam a [0,1) tartomanybdl. Ha a numerikus m argumentum adott, a math. random
visszatérési értéke egy véletlenszer(i egész szam az [1, m] tartomanybdl. Ha mindkét
numerikus paraméter, m €s n is adott, @ math.random visszatérési értéke egy
véletlenszer(i egész szam az [m, n] tartomanybdl.

math.randomseed (x)

Az x-et a pszeudo-véletlenszam generator szérasaként allitja be: egyenlé széras
egyenld sorozatu szamokat allit el6.

math.sin (x)

Visszatérési értéke x sinus-a (a fok radianban van megadva).

math.sinh (x)

Visszatérési értéke x hiperbolikus sinus-a.

math.sqrt (x)

Visszatérési értéke x négyzetgydke. (Az érték kiszamitasara az x~o.s kifejezés is
hasznalhatd.)

math.tan (x)

Visszatérési értéke x tangense (a fok radidnban van megadva).

math.tanh (x)

Visszatérési értéke x hiperbolikus tangense.

5.7 - Bemeneti és kimeneti lehet6ségek

Az I/O fuggvénykonyvtar kétfajta fajlkezelést is biztosit. Az elsé implicit fajlleirokat
hasznal, igy beallithaté alapértelmezett be- illetve kimeneti fajl; ezutan minden
muvelet ezeken az alapértelmezett fajlokon lesz vegrehajtva. A masik méd explicit
fajlleirdkat hasznal.

Implicit fajlleirok esetén minden mivelet az io témbbdl érhetd el. Explicit fajlleirok
esetén az io.open Mivelet egy fajlleiroval tér vissza, és a késébb minden mivelet
ennek a fajlleirénak eljarasaként érhetd el.

Az io tdbmb harom el6ére definialt fajlleirét is tartalmaz, a megszokott C jelentésik
szerint: io.stdin, io.stdout, €S io.stderr.

Ha nincs masként feltlintetve, minden 1/O mavelet nil értékkel tér vissza hiba esetén
(valamint egy hibalzenettel, masodik eredményként). Minden nil-t8l kilénb6z6 érték
sikeres végrehajtast jelent.

io.close ([file])

Megegyezik a file:close () hivassal. fi1e argumentum nélkil az alapértelmezett
kimeneti fajlit zarja be.

io.flush ()

Megegyezik a file: f1ush mlvelettel, de az alapértelmezett kimeneti fajlon hajtja
végre.

io.input ([file])

Ha a fajlnév meg van adva, megnyitja a nevezett fajl (széveges modban), és az
alapértelmezett bemeneti fajlként allitja be azt. Ha egy fajlkezelével van meghivva,
akkor egyszeriien ezt a kezel6t allitja be az alapértelmezett bemeneti fajlnak. Ha
paraméterek nélkil van meghivva, visszatérési értéke a jelenlegi alapértelmezett
bemeneti fajl.

Hiba esetén a flggveny hibat ér el, és nem hibakoddal tér vissza.

io.lines ([filename])

Megnyitja a megadott fajlt olvasasi modban, és annak iteracios fliggvényével tér
vissza, ami minden hivaskor a fajl egy Ujabb soraval tér vissza. Igy a kévetkez6
szerkezet

for line in io.lines(filename) do body end

végigiteral a fajl sorain. Amikor az iterator fliggvény eléri a fajl végét, nil értékkel tér
vissza (hogy befejezze a ciklust) és automatikusan bezarja a fajlt.

Az io.1ines () hivas (fajlnév nélkil) megegyezik a io.input () :1ines () hivassal,
tehat az alapértelmezett bemeneti f4jl sorain lIéptet végig. Ebben az esetben nem
zarja be a fajlt, amikor a ciklus véget ér.

io.open (filename [, mode])

A flggvény megnyit egy fajlt, a mode karakterlanc altal megszabott modban.
Visszatérési értéke egy Uj fajlkezeld, vagy hiba esetén nil és egy hibalzenet.

A nmode karakterlanc a kovetkez6 értékeket veheti fel:

"r": olvasasi méd (alapértelmezett);

"w": irdsi mod;

"a": hozzaflizési mdd;

"r+": frissitési méd, minden elézetes adat megmarad;

"w+'": frissitési mod, minden el6zetes adat térolve lesz;

"a+"": frissitési mdd, minden el6zetes adat megmarad, irni csak a fajl végére
lehet.

A mode karakterlanc végzédhet o' karakterrel, amely néhany operaciés rendszeren
szlikséges, hogy a fajl binaris mdédban nyiljon meg. Ez a karakterlanc ugyanaz, mint
a szabvanyos C flggvényben hasznalt fopen.

io.output ([file])

Az io.input-hoz hasonlit, de az alapértelmezett kimeneti fajlon hajtja végre a
miveleteket.

io.popen ([prog [, model])

Elinditja a prog programot kilén folyamatként, és egy fajlkezelével tér vissza, amivel
a programbdl adat olvashat6 ki (ha a mode értéke "r, ami az alapértelmezett érték)
vagy adat irhat6é a program szamara (ha a mode értéke "w").

Ez a flggvény a rendszertél fligg, €s nem érhetd el minden platformon.

VVV)

io.read (

Megegyezik az io.input () : read hivassal.

io.tmpfile ()

Visszatérési értéke eqgy ideiglenes fajl kezelbje. Ez a fajl frissitési médban lesz
megnyitva, és automatikusan térélve lesz, amikor a program futasa befejez6dik.

io.type (obj)

Ellendrzi, hogy a megadott obj érvényes fajlkezel6 -e. Visszatérési értéke a "file"
karakterlanc, ha az obj egy nyitott fajl, "c1osed filem, ha az obj egy bezart fajl,
és nil, ha az op3 nem f4jlkezeld.

vvv)

io.write (

Megegyezik az io.output () :write hivassal.

file:close ()

Bezarja a megadott riie fajlkezelét. Megjegyzendd, hogy a fajlok automatikusan
bezarodnak, amikor a kezel6iket 6sszegydjti a szemétgy(ijté, de ez nem
meghatarozhat6 idébe telik.

file:flush ()

A file-ba irt minden adatot elment.

file:lines ()

Egy iteracios fliggvényével tér vissza, ami minden hivaskor a fajl egy ujabb soraval
tér vissza. Igy a kdvetkezd szerkezet

for line in file:lines () do body end

végigiteral a fajl sorain. (Az io.1ines-t0l eltéréen, ez a fliggvény nem zarja be a fajlt
a ciklus vegén.)

VVV)

file:read (

A megadott formatumnak megfeleléen olvas a fi1e f4jlbdl. Minden formatum esetén
az olvasott karakterlanc (vagy szam) lesz a visszatérési érték, vagy nil, ha a
megadott formatumban nem olvashato ki adat. Ha formatum nélkdl van meghivva, az
alapértelmezett formatum lesz hasznalva, ami a kévetkez6 egész sort olvassa (lasd
lentebb).

A kovetkez6 formatumok hasznalhatbak:

e "*n": egy szamot olvas; ez az egyetlen formatum, ami szameértékkel tér vissza
karakterlanc helyett.

o ™a":az egész fajlt beolvassa a jelenlegi poziciétél. A fajl végén Ures
karakterlanccal tér vissza.

« "™I": a kdvetkezb sort olvassa (a sorvéget atugorva), a fajl végén a
visszatérési érték nil. Ez az alapértelmezett érték.

e szam: a megadott szamu hosszUsagu karakterlancot olvassa, a fajl végén a
visszatérési érték nil. Ha a szam 0, nem olvas semmit, és a visszatérési érték
eqgy Ures karakterlanc, vagy a fajl végén nil.

file:seek ([whence] [, offset])

poziciora, a megadott whence karakterlanctdl figgéen, ami a kdvetkezd értekek
egyike lehet:

o "set": az alap a 0 pozici6 (a fajl kezdete);

e "cur": az alap a jelenlegi pozicio;

« "end": az alap a fajl vége;

Siker esetén a seex flggveény visszatérési értéke a végsoé pozicid, amelynek mértéke
a fajl elejétél mérédik, byteokban. Ha a figgvény sikertelenll ér véget, a visszatérési
értéke nil, valamint egy hibatizenet, ami a hibarél ad tovabbi informaciot.

A whence alapértelmezett értéke "curn, az ofrset értéke pedig 0. igy a file:seek ()
hivas visszatérési értéke a jelenlegi fajl pozicidja, valtoztatas nélkil; a

file:seek ("set") hivas a fajl elejére allitja a poziciét (és 0-val tér vissza); valamint
a file:seek ("end") hivas a fajl végére dllitja a poziciét, és a fajl méretével tér
vissza.

file:setvbuf (mode [, size])
A kimeneti fajl bufferének maédjat éallitja be. Haromféle méd elérhet6:

e "no": nincs bufferelés; minden kimeneti mlvelet eredménye azonnal
megjelenik.

o "full": teljes bufferelés; a kimeneti miveletek csak akkor hajtodnak végre,
amikor a buffer megtelik (vagy a fajl explicit moédon ki lesz iratva a fajlba (lasd
io.flush)).

« "line": soros bufferelés; a kiemenet egy Ujsorig lesz bufferelve, vagy van
valamilyen bemenet van specialis fajlokbdl (példaul egy terminalis eszk&zrdl).

Az utolsé két esetben a size argumentum adja meg a buffer méretét, byteokban. Az
alapértelmezett értéke egy elfogadhaté méret.

vvv)

file:write (

A megadott argumentumok értékeit a fi1e fajlba irja. Az argumentumok
karakterlancok és szamok lehetnek. A t6bbi érték kiirasahoz a tostring vagy
string.format hasznalandd a write hivas el6tt.

5.8 - Operacios rendszer szolgaltatasok

Ez a flUggvénykdnyvtar a os tdmbon kesztll érhetd el.

os.clock ()

Visszatérési értéke a program altal hasznalt CPU idé megbecslult értéke.

os.date ([format [, time]])

Visszatérési értéke a datumot és id6t tartalmazd karakterlanc vagy témb, a
megadott format formatumban.

Ha a time argumentum meg van adva, ez az idépont lesz formazva (lasd az os.time
flggvényt ennek az értéknek a leirasaért). Egyébként a date a jelenlegi idét
formazza.

Ha a rormat "!" jellel kezdédik, akkor a datum az egységes egyetemes id6 szerint
lesz formazva. Ha ezutan az opciondlis karakter utan a format értéke »t, akkor a
date Visszatérési értéke egy tdmb, a kdvetkezé mezbkkel: year (négy szamjegy),
month (1--12), day (1--31), hour (0--28), min (0--59), sec (0--61), wday (a hét napja, a
vasarnap értéke 0), yday (az év napja), és isdst (szbkéev jelzé, boolean).

Ha a format €rtéke nem =t, akkor a date visszatéresi értéke a jelenlegi datum
karakterlancként, melynek formazasanak szabalyai megegyeznek a strftime C
flggvényével.

Argumentumok nélkili hivasakor a visszatérési értéke a datum és az idd elfogadhat6
formatuma, amely a rendszertél és a jelenlegi nyelvi kdrnyezettdl fligg (tehat az
os.date () hivas ugyanaz, mint az os.date ("sc")).

os.difftime (t2, t1l)

Visszatérési értéke a t1 és t2 id6k k6zotti kilénbség, masodpercekben. POSIX,
Windows, és néhany egyeb rendszeren ez ugyanaz, mint a t2-t1.

os.execute ([command])

Ez a flUggvény megegyezik a system C flggvénnyel. A command parancs lesz
végrehajtva az operacios rendszer parancsértelmezdije altal. Visszatérési értéke egy
allapotkdd, ami rendszerfiiggé. Ha a commanda nincs megadva, visszatérési értéke egy
nem-zéro érték, ha a parancsértelmezd elérhetd, ellenkezd esetben 0.

os.exit ([code])

Meghivja az exit C flggvényt, az opciondlis code kdddal, a gazdaprogram
befejezéséhez. A code alapértelmezett értéke a siker kodja.

os.getenv (varname)

Visszatérési értéke a folyamat varname nevl kérnyezeti valtozéjanak értéke, vagy nil,
ha a valtozé nincs deklarélva.

os.remove (filename)

A megadott nevi fajlt vagy kényvtarat térli. A térlendé kényvtar csak Ures lehet. Ha a
flggvény sikertelen, visszatérési értéke nil, valamint egy hibalzenet, amely a hibat
irja le.

os.rename (oldname, newname)

Atnevezi a megadott o1dname nevi fajlt vagy kdnyvtarat newname neviire. Ha a
flggvény sikertelen, visszatérési értéke nil, valamint egy hibalzenet, amely a hibat
irja le.

os.setlocale (locale [, categoryl])

A program jelenlegi nyelvi kdrnyezetét allitja be. A 10cale egy karakterlanc, ami
megadja a nyelvi kdrnyezetet; a category egy opcionalis karakterlanc, amely a
megvaltoztatandd kategériat adja meg: "a11", "collate", "ctype", "monetary",
"numeric", vagy "time"; az alapértelmezett kategéria az "a11". A fliggvény
visszatérési értéke az Uj nyelvi kdrnyezet neve, vagy nil, ha a kérés nem
végrehajthato.

Ha az els6 argumentum nil, a fliggvény nem tesz semmit, csak a megadott kategéria
jelenlegi nyelvi kérnyezetének nevével tér vissza.

os.time ([table])

Visszatérési értéke a jelenlegi id6, ha argumentumok nélkil van meghivva, vagy a
megadott tdémb altal meghatarozott datum és idé. Ennek a tombnek a kévetkezé
mezdi kdtelezbek: year, month, €S day, a tovabbiak csak opcionalisak: hour, min, sec,
és isdst (ezeknek a mez6knek a magyarazata a os.date fliggvény leirasaban
szerepel).

A visszatérési érték egy szam, amelynek jelentése a rendszertél figg. POSIX,
Windows, és néhany egyéb rendszeren ez a szam egy megadott kezd6éponttdl (a
"korszaktdl") eltelt masodpercek szama. Mas rendszereken a jelentése nincs
megadva, és csak a date és a difftime paramétereiként hasznalhato.

os.tmpname ()

Visszatérési értéke egy karakterlanc, amely egy ideiglenes fajl neveként hasznalhato.
A fajlt explicit m6don meg kell nyitni a hasznalat el6tt, valamint explicit médon el kell
tavolni, ha nincs ra tovabb szlikség.

5.9 - A hibakeresési figgvénykonyvtar

Ez a fliggvenykonyvtar a hibakeresési felllethez biztosit elérést a Lua programok
szamara. Ovatossagra kell térekedni hasznalatakor. Az itt talalhaté fliggvények
kizarélag csak hibakeresési vagy hasonld célokra hasznalhatbéak, példaul sebesség
optimalizalasra. Soha ne hasznaljuk sima programozasi eszk6zként, mivel nagyon
lelassithatja a programot. Sét, néhany fliggvénye megkertli a Lua kéd bizonyos
eléfeltételezéseit (pl., egy figgvény lokalis valtozoi kivilrél nem elérhetbek, és az
userdata tipus metatémbjei sem véltoztathatéak meg a Lua kodbdl), és igy atugorhat
bizonyos biztonsagi pontokon.

A flggvénykdnyvtar fliggvenyei a debug tdmb mezdiként érhetbek el. A szalakon
muveleteket végz6 fliggvényeknek van egy elsé, opcionalis paramétere, ami a szal
maga, amin a mivelet lesz végrehajtva. Az alapértelmezett érték mindig a jelenleqi
szal.

debug.debug ()

Egy parbeszédes médba Iép a felhasznaldval, €és minden egyes karakterlancot
végrehaijt, amit a felhasznalé megad. Egyszerl parancsokkal, vagy mas egyéb
hibakeres6 lehetéségekkel, a felhasznald megvizsgalhat globalis és lokalis
valtozokat, megvaltozthathatja az értékeiket, kiértékelhet kifejezésket, stb. Ha a sor
csak a cont sz0t tartalmazza, befejezi a fliggvényt, s a hivo folytatja a vegrehajtast.

A debug.debug parancsai lexikalisan nem egymasba agyazott a fliggvényekkel, igy
lokalis valtozok kdzvetlen elérésére nincs lehetéség.

debug.getfenv (o)

Visszatérési értéke az o objektum kdrnyezete.

debug.gethook ([thread])

Visszatérési értéke a megadott szalhoz beallitott hurok, harom értékben: a jelenleqgi
hurokfliggvény, a jelenlegi hurok maszk, valamint a jelenlegi hurokszamlalé (ami a
debug.sethookfuggVénnye|é”ﬂhauabe)

debug.getinfo ([thread,] function [, what])

Visszatérési értéke egy tdmb, amely a megadott figgvény informaciéit hordozza. A
flggvény kdzvetlenll is megadhatd, vagy szamalakban is, ez esetben a megadott
szal vermének szintjét jelenti ez a szam: a 0 a jelenlegi fliggvény (a getinfo maga);
az 1 szint az a fliggvény, ami meghivta a getinfo fliggvényt, és igy tovabb. Ha a
function $zam, és nagyobb, mint az aktiv figgvények szama, a getinfo visszatérési
értéke nil.

A visszatérd tdmb mezéi ugyanazok lehetnek, mint a 1ua_getinfo esetén, attol
flggden, hogy a what karakterlanc milyen mezdket télt fel értékekkel. A wnat
alapértelmezés szerint minden elérhetd informaciot lekér, kivéve az érvényes sorok
szamanak tdmbjét. Ha az opcionalis 't' paraméter is meg van adva, egy func nevi
mez6 is létrejon, magavala a fliggvénnyel. Ha az 'v' paraméter szerepel, akkor

egy activelines mez6 jon létre, az érvényes sorok szamanak témbjével.

Példaul, a debug.getinfo (1, "n") .name Kifejezés visszatérési értéke a jelenlegi
flggvény neve, ha talalhaté hozza elfogadhat6 név, valamint a
debug.getinfo (print) visszatérési értéke egy tdmb, amely a print fliggvény 6sszes

avs

debug.getlocal ([thread,] level, local)

Ennek a flggvénynek a visszatérési értéke a verem 1eve1 szintjén 1évé fliggveny
local index(valtozéjanak neve, valamint annak értéke. (Az elsé paraméter vagy
lokalis valtozé indexe 1, és igy tovabb, egészen az utolso aktiv lokalis valtozoéig.) A
flggvény visszatérési értéke nil, ha a megadott indexen nincs lokalis valtozo, és
hibat ér el abban az esetben, ha a 1eve1 a tartmanyon kivdli érték. (A debug.getinfo
flggvénnyel ellendrizhetd, hogy a szint érvényes -e.)

A (" (nyitd zardjel) jellel kezdb6dd valtozdk belsd valtozdkat irnak le (ciklus valtozok,
ideiglenes tarolok és C flggvények lokalis valtozdi).

debug.getmetatable (object)

Visszatérési értéke a megadott object metatdmbje, vagy nil, ha nincs metatdmbje.

debug.getregistry ()

Visszatérési értéke a registry témb (lasd §3.5).

debug.getupvalue (func, up)

Visszatérési értéke a megadott func fliggvény up indexen 1évd felséértékének neve,
valamint annak értéke. Visszatérési értéke nil, ha a megadott indexen nem talalhat6
felséérték.

debug.setfenv (object, table)

A megadott object kérnyezetét cseréli le a megadott tavie tdbmbre. Visszatérési
értéke az object objektum.

debug.sethook ([thread,] hook, mask [, count])

A megadott figgvényt allitja be hurokként. A mask karakterlanc és a count szam adja
meg, mikor lesz meghivva a fliggvény. A maszk a kévetkezd jelentéssel bird
karaktereket tartalmazhatja:

e e : A hurok minden alkalommal meg lesz hivva, amikor a Lua meghiv egy
flggvényt;

e "rv: A hurok minden alkalommal meg lesz hivva, amikor a Lua visszatér egy
flggvénybdl;

e m1v: A hurok minden alkalommal meg lesz hivva, amikor a Lua egy Ujabb sor
feldolgozasaba kezd.

Nullatol kilénbdz6 count érték esetén a hurok minden count végrehajtott mivelet
utan meg lesz hivva.

Ha argumentumok nélkil van meghivva, a debug. sethook kikapcsolja a hurkot.

Amikor a hurok meg lesz hivva, az elsé paramétere egy karakterlanc, ami megadija,
mi valtotta ki az eseményt: "ca11", "return" (vagy "tail return"), "line", valamint
"count". A sor események esetén a hurok az Uj sor sorszamat kapja meg masodik
paraméterkent. A hurkon bellil a getinfo 2-es szinten toérténd hivdsaval a jelenleg
futo fliggvenyrél kérhetd le bévebb informacié (a 0. szint a getinfo fllggvény, az 1. a
hurok fliggvény), kivéve, ha az esemény "tail return". Ebben az esetben a Lua
csak szimuldlja a visszatérést, és a getinfo érvénytelen adatokkal fog visszatérni.

debug.setlocal ([thread,] level, local, value)

A flggvény a verem 1evel szintjén lévd fliggvény 1oca1 indexd valtozojanak a value
értéket adja. A fliggvény visszatérési értéke nil, ha a megadott indexen nincs lokalis
valtozd, és hibat ér el abban az esetben, ha a 1eve1 a tartmanyon kivdli érték. (A
debug.getinfo flggvénnyel ellendrizhetd, hogy a szint érvényes -e.) Egyéb esetben
a lokalis valtozé nevével tér vissza.

debug.setmetatable (object, table)

A megadott object objektum metatémbjét cserélile a tabie tdmbre (ami nil is lehet).

debug. setupvalue (func, up, value)

A fliggvény a megadott func fliggvény up indexen 1évé felséértékének a value értéket
adja. A flggvény visszatérési értke nil, ha a megadott indexen nincs felséérték.
Egyéb esetben a felséérték nevével tér vissza.

debug.traceback ([thread,] [message])

Visszatérési értéke egy karakterlanc, ami hivé verem visszavezetése. Az

opcionalis message karakterlanc a visszavezetés elejére lesz flizve. A fuggvény féleg
az xpcall flggvény esetén van hasznalatban, hogy jobb hibalizeneteket lehessen
eléallitani.

6 - Lua feldolgozé (stand-alone)

Annak ellenére, hogy a Lua egy kiterjeszett nyelvként lett Iétrehozva, amelyet a C
programba agyazva lehet hasznalni, gyakran hasznaljak egyeduilallé nyelvként is. Az
alap csomagban szerepel egy feldolgoz6, melynek a neve egyszeriien csak 1ua. Ez
tartalmazza az alapértelmezett flggvénykdnyvtarakat, beleértve a hibakeresét is. A
hasznalata a kévetkezé:

lua [options] [script [args]]
Az opcidk a kdvetkezdk lehetnek:

e -e stat:Végrehajtja a stat kifejezést;

e -1 mod: "betllti" a mod modult;

e -ia scriptfuttatasa utén interaktiv médba valt;

e —v: Kkiirja a verzi6 informacidkat;

: kikapcsolja az opciok kezelését;

e -!azstdin-tfajlként hajtja végre, és kikapcsolja az opcidk kezelését.

Az opcidk kezelés utan a 1ua futtatja a megadott scriptet, a megadott args
karakterlancokat pedig argumentumként tarsitja hozza. Ha argumentumok nélkil van
meghivva, a 1ua viselkedése ugyanaz, minta 1ua -v -i esetén, amikor az
alapértelmezett bemenet (stdin) egy terminal, egyéb esetben ugy, minta 1ua - .

Barmilyen argumentum futtatasa el6tt, a feldolgozé ellenérzi a Lua_in1T kbrnyezeti
valtozét. Ha a formatuma e ri 1ename, akkor a 1ua végrehaijtja a fajlt. Egyébként a 1ua
az ott megadott karakterlancot hajtja végre.

Minden opcié sorrendben lesz kezelve, kivéve a -i. Példaul a kévetkez6 inditas:

$ lua -e'a=1' -e 'print(a)'

script.lua

a értékét 1-re allitja, majd kiirja az a értékét (ami '1"), végul argumentumok nélkal
futtatja a script.1ua fajlt. (Itt a s jel a parancsértelmezé készenléti jele. Ez
rendszerenként eltéré lehet.)

A script végrehajtasa el6tt a 1ua a parancssor 6sszes argumentumat egy arg nevi
globalis témbbe gy(ijti 6ssze. A script neve a 0 indexen van tarolva, a script neve
utan elsé argumentum az 1 indexen, és igy tovabb. A script neve el6tti
argumentumok (tehat, a feldolgozo6 neve és az opciok utan, de a script neve el6tt),
negativ indexeket kapnak. Igy a kdvetkezé hivas esetén:

$ lua —-la b.lua tl t2

a feldolgozé futtatja az a. 1ua fajlt, és Iétrehoz egy tdmbdot

{ [-2] = "lua", [-1] = "-1la",
"b.lua",
"tl", [2} = "t2" }

o
=
o

és véqgul futtatja a v. 1ua fajlit. A script az argi11, arg(2], argumentumokkal lesz
meghivva; ezek az argumentumok elérhetéek a scriptbdl is a vararg kifejezés '. . .’
hasznalataval.

Interaktiv médban, ha egy félkész allitas keril bevitelre, a feldolgozé var annak
befejezésére, egy Uj készenléti jel megjelenitésével.

Ha a _prompT globalis valtozé tartalmaz egy karakterlancot, az az érték lesz a
készenléti jel. Hasonldan, ha a _provpt2 tartalmaz karakterlancot, annak értéke lesz
a masodlagos készenléti jel (befejezetlen allitasok esetén lesz megjelenitve). Tehat
mindkét készenléti jel megvaltoztathaté kdzvetlenil a parancssorbdl is, példaul:

$ lua -e"_PROMPT='myprompt> '" -i

(a klls6 idézéjelek a parancsétrelmezd szamdra vannak, a belsé par pedig a Lua
szamara), vagy a Lua programbdl, a _prowvpt Valtozénak térténd értékadassal. Ne
feledjik el haszndlni a -i kapcsol6t, hogy interaktiv médba Iépjlnk, ellenkezé
esetben a program csak 'csendben' véget érne, kbzvetlenll a _prompT Valtozénak
torténd értékadas utan.

Unix rendszereken a Lua bedllithato, mint script-feldolgozo, mivel az nem veszi
figyelembe az elsé sort, ha az # karakterrel kezdddik. gy a Lua scriptek
veégrehajthaté programokka alakithatéak at a chmod +x paranccsal, és a #!
formulaval:

#!/usr/local/bin/lua

(természetesen a Lua feldolgozoja gépenként eltéré lehet. Ha a 1ua a paTh Utvonalon
van, akkor a

#!/usr/bin/env lua

egy sokkal jobb, atvihetébb megoldas.)

7 - Eltérések az el6z6 verziohoz képest

A kovetkez6kben szerepelnek az eltérések, amelyeket a Lua 5.0 és Lua 5.1 kdzotti
atalakitas soran figyelembe kell venni. A legtébb eltérés (inkompabilitas)
megelézhetd, ha a Lua a megfelel opcidkkal van leforditva (lasd a 1uaconf.n fajlt).
Mindezek ellenére, ezek az opciok a Lua kévetkez6 verzidjaban mar nem fognak
szerepelni.

7.1 - Valtoztatasok a nyelvben

e Avararg rendszer az arg pszeudo-argumentumra lett megvaltoztatva, ami egy
tdbmb, ami az extra argumentumokat tartalmazza. (Lua_coMPAT_VARARG
k&pCSO'é ad luaconf.h féjlban)

« Egy finomitas Iépett életbe a for és repeat allitasok implicit valtozbdinak
lathatdésaganal.

e A hosszu karakterlancok / hossza megjegyzések szintakszisa ([[string] 1)
nem engedélyezi az egymasba agyazast. Az U szintakszis hasznalhat6
helyette ((=(stringl=1) (Lua_comPaT_LsTR kapcsold a 1uaconf.n fajlban.)

7.2 - Valtoztatasok a fuggvénykonyvtarakban

e A string.gfind flggvény at lett nevezve, Uj neve string.gmatch.
(Lua_coMpAT_GrFIND kapcsold)

e Haa string.gsub harmadik argumentuma flggvény, és annak visszatéresi
értéke nil vagy false, a cserekifejezés az egész egyezés, az lUres
karakterlanccal ellentétben.

e Atable.setn el lett tavolitva. A tabie.getn flggvény helyett mostantol az G
hossz operator (#) hasznalandé. (Lua_covpat_ceETN Kapcsold)

e A 10ad1ib flggveény at lett nevezve, Uj neve package.loadlib.
(Lua_coMPAT_LOADLIB Kapcsolo)

e Anath.mod fliggvény at lett nevezve, Uj neve math. fmod. (LUA_COMPAT_MOD
kapcsold)

e Atable.foreach €S table.foreachi fuggvények el lettek tavolitva. Helyette
for ciklus hasznalandd pairs €s ipairs kifejezésekkel.

« Nagy valtozasok léptek életbe a require fliggvényben az Uj modulrendszer
miatt. Annak ellenére, hogy a mikddése hasonld, és kompatibilis a régivel,
a require az Utvonalat a package.path valtozébdl kéri le a Lua_rats helyett.

e A collectgarbage fliggvény kilénb6z6 argumentumokat kapott. A gcinfo
flggvény el lett tavolitva, helyette a coliectgarbage ("count™) hasznalandoé.

7.3 - Valtoztatasok az API-ban

e A 1uaopen_~* flggvények (flggvénykdnyvtarak megnyitdsa) nem hivhatéak
meg kbzvetlendl, mint egy sima C flggvény. A Lua-n keresztil kell meghivni,
mint egy Lua figgvényt.

e A lua_open le lett cserélve a 1ua_newstate fliggvényre, hogy a felhasznélé
beallithasson egy memoria-lefoglalé fliggvényt. Az alapértelmezett
flggvénykdnyvtar 1uat,_newstate flggvényének hasznalataval egy allapot
készithetd, amely az alapértelmezett lefoglal6 fliggvény lesz (ami a realioc
flggvényen alapszik).

e A lualL_getn €S 1ual_setn flggvények (a segédkdnyvtarban) el lettek
tavolitva. A 1ual_getn helyett a 1ua_objlen hasznalhatd, a 1ual_setn helyett
pedig semmi, véglegesen el lett tavolitva.

e A lual_openlib le lett cserélve a 1ual_register fliggvényre.

e A 1ual_checkudata fliggveény mostantdl hibat dob, ha a megadott érték nem az
elvart tipusu userdata tipus. (5.0-ban a visszatérési értéke nuLL volt.)

8 - A Lua teljes szintakszisa

A kovetkez6kben a Lua teljes szintakszisa szerepel, kiterjesztett BNF formatumban.
(Ez nem irja le az operatorok precedenciajat.)

chunk {stat [*; "]} [laststat [; 1]

block ::= chunk
stat ::= varlistl "=" explistl |
functioncall |

do block end |

while exp do block end |

repeat block until exp |

if exp then block {elseif exp then block} [else block] end |
for Name "'=" exp ~, exp [, exp] do block end |

for namelist in explistl do block end |

function funcname funcbody |

local function Name funcbody |

local namelist ['=" explistl]

laststat ::= return [explistl] | break

funcname ::= Name { . Name} [: Name]

varlistl = var {°, var}

var ::= Name | prefixexp '[~ exp "1 | prefixexp ~. Name
namelist = Name { , Name}

explistl ::= {exp ~, } exp

exp ::= nil | false | true | Number | String | ~... | function |
prefixexp | tableconstructor | exp binop exp | unop exp
prefixexp ::= var | functioncall | ~(exp ")~
functioncall ::= prefixexp args | prefixexp " : Name args
args ::= ~(° [explistl] ") | tableconstructor | String
function = function funcbody

funcbody ::= " (° [parlistl] ") block end

parlistl ::= namelist [, ~..." 1 |

tableconstructor ::= " {° [fieldlist] "}~

fieldlist ::= field {fieldsep field} [fieldsep]

field ::= "[" exp "1 "= exp | Name "=’ exp | exp

fieldsep ::= °,°

binop ::= 47 | S=7 | kT | /7 | car
<" | <=7 | "> | ">=" | ‘== | ~=" |
and | or

unop = =" | not | #

Utols6 mddositas: Mon Jun 5 17:05:27 BRT 2006
Forditas datuma: Sat Oct 25 10:13:20 CET 2008

Forditasi megjegyzések: néhény kifejezés csak nehezen Ultethet6é at magyar nyelvre. Lehet hogy van
ra szabvanyositott kifejezés, én azonban ilyenrél - a forditas befejezésekor - nem tudtam. A kédnnyebb
megérthetéség érdekében most néhany kifejezés fel lesz tlintetve az eredeti angol megfeleljével:

eljaraskonyvtar
értékkiemelés
feldolgoz6
fels6 érték
felsorolas

library

captures
interpreter

upvalue

enum, enumeration

flggvénykdnyvtarlasd eljaraskdnyvtar

hibat ér el
hurok

kliens
rendezett tdmb
szemétgyjté

témb
véghivas
zarvany

raises an error

hook

host

array

garbage collector

table (bar a 'table’ lehet hash is. lasd
rendezett tdmb)

tail call

closure

Hibas forditas, eliras és otletek jelenthetéek az e-mail cimemen: ejjeliorjarat@gmail.com

