

Lua 5.1 Használati útmutató
készítette Roberto Ierusalimschy, Luiz Henrique de Figueiredo, Waldemar Celes

Copyright © 2006 Lua.org, PUC-Rio. Minden jog fenntartva.

1 - Bevezetés

A Lua egy eljárásokon alapuló, kiegészítő programnyelv, adat leírási lehetőségekkel
kibővítve. Magasfokú támogatást nyújt az objektum-orientált, funkcionális vagy adat-
vezérelt programozáshoz is. A Lua nyelvet egy erős, 'nehézsúlyú' scriptnyelvnek
szánták, amelyet bármilyen program használhat. A Lua függvénykönyvtárként lett
létrehozva, és tiszta C nyelven lett írva (azaz az ANSI C és C++ nyelvek általános
részhalmazaként).

Mivel ez egy kiegészítő nyelv, így nem létezik "fő" program sem: csak a fő kliensbe
beágyazva működik, amelyet beágyazó programnak vagy egyszerűen hostnak
neveznek. Ez a host program megadhatja egyes függvényeknek, hogy hajtsák végre
a megadott Lua kódot, Lua változókat írhat és olvashat, valamint C funkciókat
regisztrálhat, amelyeket később a Lua kód meghívhat. A C függvények használatával
a Lua kiterjeszthető, és így különböző problémák széles tartományával
megbirkózhat, így olyan személyre szabott programozási nyelvek készíthetőek,
amelyek ugyanazt a szintaktikai keretrendszert használják. A Lua csomag tartalmaz
egy host programot, amelynek lua a neve. Ez a Lua eljáráskönyvtárát használva
biztosítja a teljes, egyedülálló Lua értelmezőt.

A Lua egy ingyenes program, amely nem vállal garanciát semmilyen esetre, ahogy
az a licencében is szerepel. Ez a leírás a Lua hivatalos weblapján is
megtekinthető: www.lua.org.

Mint megannyi másik leírás, ez a dokumentum is hiányos néhány helyen. A Lua
kialakításáról szóló fórum szintén megtalálható a Lua weboldalán. Részletesebb
programozási ismeretek elsajátításához nyújt segítséget Robert könyve, a
Programming in Lua.

2 - A nyelv

Ez a rész a szintaktikai és szemantikai részét írja le a Lua nyelvnek. Más szóval, ez a
rész határozza meg, mely szimbólumok elfogadottak és érvényesek, ezek hogyan
kombinálhatóak, és az egyes kombinációk mit jelentenek.

A nyelv konstruktorai ('létrehozói') a kiterjesztett BNF jelrendszer segítéségével
lesznek feltüntetve, ahol az {a} kifejezés értéke 0 vagy több a, és az [a] kifejezés
jelentése, hogy a opcionális, elhagyható. A nem-kulcsszavak nem-kulcsszó
formában, a kulcsszavak kulcsszó formában, a többi kifejezés pedig `=´ formában
szerepel. A Lua teljes szintaktikája a leírás végén található.

2.1 - Lexikális szabályok

A Lua nyelvben a nevek (más néven azonosítók) bármilyen betűkből, számokból és
aláhúzás karakterből álló karakterlánc lehetnek, azonban nem kezdődhetnek
számjeggyel. Ez megegyezik a legtöbb nyelv azonosítóinak szabályaival. (A betű
meghatározása a helyi beállításokon múlik: bármely karakter, amely a beállítások
szerint alfabetikusnak minősül, használható azonosítóként.) Az azonosítók a változók
megnevezésére és a tömb mezők azonosítására használhatóak.

A következő kulcsszavak foglaltak, és nem használhatóak azonosítókként:

 and break do else elseif
 end false for function if
 in local nil not or
 repeat return then true until while

A Lua nyelv nem tesz különbséget kis- és nagybetűk között, így amíg az and foglalt
szó, az And és az AND két különböző, érvényes név. Megállapodás, hogy azok a
nevek, amelyek aláhúzással kezdődnek, és nagybetűkkel folytatódnak (mint pl. a
_VERSION) a Lua számára fenntartott belső globális változók.

A következő karakterláncok más vezérjelet fejeznek ki:

 + - * / % ^ #
 == ~= <= >= < > =
 () { } []
 ; : ,

A literális (szó szerinti) karakterláncok a sima és dupla idézőjelekkel vannak
határolva, és a következő C-alapú vezérlősorozatokat tartalmazhatják: '\a' (csengő),
'\b' (törlés), '\f' (lapemelés), '\r' (kocsivissza), '\t' (vízszintes tabulátor), '\v'
(függőleges tabulátor), '\\' (backslash), '\"' (idézőjel [dupla idézőjel]), valamint '\''
(aposztróf [szimpla idézőjel]). (Ezeken felül, egy backslash után elhelyezett újsor egy
újsort eredményez a karakterláncban.) Egy karakter megadható a numerikus
értékével, \ddd formában is, ahol ddd maximum három számjegyet jelenthet (ha a
numerikus blokkot egy szám követi, akkor pontosan három számjegyet kell
használni). A karakterláncok a Lua nyelvben tartalmazhatnak bármilyen 8-bites
értéket, beleértve a beágyazott nullát is, amely '\0' formában adható meg.

A literális karakterláncokban, melyeket dupla (v. szimpla) idézőjelek zárnak le, a
dupla (szimpla) idézőjeleket, az újsor karaktert, a backslash-t, vagy a beágyazott

nullát vezérlőkarakterrel kell ellátni. A többi karakter közvetlenül beilleszthető a
karakterláncba. (Néhány vezérlőkarakter problémát okozhat a fájlrendszer számára,
de a Lua-nak nincs problémája ezekkel).

A literális karakterláncok hosszú formában is meghatározhatóak a hosszú zárójelek
segítségével. Az n szintű nyitó hosszú zárójel megadásakor a nyitó szögletes zárójel
után n egyforma jel következik, melyet még egy nyitó szögletes zárójel követ. Tehát a
0. szintű nyitó hosszú zárójel kezdő formulája [[, az első szintűé [=[, és így tovább.
A záró hosszú zárójel megadása hasonló módon történik, például, a negyedik szintű
záró hosszú zárójel formulája]====]. A hosszú karakterlánc bármely szintű nyitó
hosszú zárójellel kezdődik, és az ugyanolyan szintű záró hosszú zárójelig tart. A
literális karakterláncok szögletes zárójelezett formája több sorban is szerepelhet,
ebben az esetben nem dolgozza fel az esetleges vezérlőkaraktereket, és figyelmen
kívül hagyja a köztes, bármilyen szintű hosszú zárójeleket. Bármit tartalmazhatnak,
kivéve a megfelelő szintű záró hosszú zárójelet.

Kényelmi okokból, abban az esetben, ha a nyitó hosszú zárójelet közvetlenül egy
újsor követ, az újsor karakter nem kerül bele a karakterláncba. Például, egy ASCII-t
használó rendszer (ahol 'a' kódja 97, az újsor kódja 10, és '1' kódja 49), a következő
öt literális karakterlánc ugyanazt határozza meg:

 a = 'alo\n123"'
 a = "alo\n123\""
 a = '\97lo\10\04923"'
 a = [[alo
 123"]]
 a = [==[
 alo
 123"]==]

A numerikus konstansok leírhatóak opcionális decimális résszel és egy opcionális
decimális hatványkitevővel. A Lua szintén elfogadja a hexadecimális konstansokat,
ez esetben ezek 0x előtaggal kezdődnek. Érvényes numerikus konstansoknak
tekinthetőek a következő kifejezések:

 3 3.0 3.1416 314.16e-2 0.31416E1 0xff 0x56

A megjegyzés (komment) dupla gondolatjellel (--) kezdődik, bárhol a karakterláncon
kívül. Ha a -- jelek után következő szöveg nem nyitó hosszú zárójellel kezdődik,
akkor rövid megjegyzésről beszélünk, ellenkező esetben ez egy hosszú megjegyzés,
amely az azonos szintű záró hosszú zárójelig tart. A hosszú megjegyzések
legtöbbször egy kódrészlet ideiglenes kiiktatására szolgálnak.

2.2 - Értékek és típusok

A Lua egy dinamikus típusú nyelv. Ez azt jelenti, hogy a változóknak nincsenek
típusaik, csak az értékeknek. A nyelvben nincsenek típus definíciók sem, minden
érték magának alakítja ki a típusát.

A nyelvben minden érték első osztályú érték. Ez azt jelenti, hogy az értékek
változókban tárolhatóak, függvények paramétereiként használhatóak és visszatérési
értékek is lehetnek.

Nyolc típus létezik a Lua nyelvben: nil, boolean, number, string, function, userdata,
thread, és table. Nil a típusa a nil értéknek, amelynek fő tulajdonsága, hogy
különbözik az összes többi értéktől; általában a használható érték hiányát jelenti. A
boolean típusnak két értéke lehet: false (hamis) és true (igaz). Mind a nil, mind a
false hamissá tesz egy feltételt; minden egyéb érték igazzá. A number típus valódi
(dupla-pontosságú lebegőpontos) számokat jelöl. (Nem nehéz olyan Lua értelmezőt
készíteni, amely más típusú számokat használ, például szimpla pontosságú
lebegőpontost vagy hosszú egész számost; lásd a luaconf.h fájlt.) A string típus egy
karaktertömböt hoz létre. A Lua 8-bit alapú: a karakterláncok bármilyen 8-bites
karaktert tartalmazhatnak, beleértve a beágyazott nullát ('\0') is (lásd §2.1).

A Lua meg tud hívni (és kezelni is tud) Lua és C nyelven írt függvényeket is. (lásd
§2.5.8).

Az userdata típus végtelen számú C adat tárolását biztosítja LUA változókban. Ez a
típus egy nyílt memóriaterület címére hivatkozik, és nincs előre meghatározott
művelete a Lua számára, kivéve a hozzárendelést és az azonosítási tesztet.
Azonban a metatömbök használatával a programozó megadhat műveleteket az
userdata értékek számára (lásd §2.8). Ezek az értékek Lua-ból nem módosíthatóak
és nem is hozhatóak létre, csak a C API-n keresztül. Ez garantálja a host program
adatainak sértetlenségét.

A thread típus segítségével független futási szálak hozhatóak létre, és korutinok
valósíthatóak meg (lásd §2.11). A Lua szálak nem összekeverendőek az operációs-
rendszerbeli szálakkal. A nyelv minden rendszeren támogatja a korutinok
használatát, még azokon is, amelyek nem támogatják a szálakat.

A table típus asszociatív tömböt jelent, így tehát a tömbök indexei (azonosítói) nem
csak számok, hanem bármilyen más értékek is lehetnek (kivéve a nil-t). A táblák
 heterogének is lehetnek, így az értékek is bármilyen típusúak lehetnek (kivéve a nil-
t) A tábla az egyetlen adatstruktúra mechanizmus a nyelvben; képviselhetnek
rendezett tömböket, szimbólumtárakat, halmazokat, bejegyzéseket, gráfokat, fákat,
stb. Bejegyzések készítésekor a Lua a mező nevét használja indexként. A nyelv
támogatja az elérést a.name és a["name"] formában is. A tömbök létrehozásának
több módja is van a nyelvben (lásd §2.5.7).

Ahogy az indexek, úgy az értékek is bármilyen típusúak lehetnek (kivéve a nil-t).
Bizonyos esetekben, mivel a függvények első-osztályú értékek, a tömbök mezői
tartalmazhatnak függvényeket is. Így ezek a tömbök szintén tartalmazhatnak
eljárásokat is. (lásd §2.5.9).

A tömbök, függvények, szálak és a (teljes) userdata értékek objektumok: a változók
nem tartalmazzák ezeket az értékeket, csak a hivatkozásukat. Az értékadások, a
paraméterátadások és a függvények visszatérési értékei mindig befolyásolják
ezeknek az értékeknek a hivatkozásait; ezek a műveletek nem foglalnak magukban
semmilyen másolatot.

A függvénykönyvtár type függvényének visszatérési értéke az adott érték típusát
leíró karakterlánc.

2.2.1 - Átalakítások

A Lua automatikusan biztosít átalakítási lehetőséget a karakterlánc és a szám
értékek között futási időben is. Bármilyen számtani művelet végrehajtásakor, amely
karakterláncon hajtódna végre, a Lua az átalakítási szabályokat követve megpróbálja
a karakterláncot számmá alakítani. Fordított esetben, amikor egy szám van
használatban olyan helyen, ahol karakterláncnak kellene következnie, a szám
karakterlánccá lesz alakítva, elfogadható formában. A számok karakterlánccá
alakításához a string eljáráskönyvtár format függvénye használatos (lásd
string.format).

2.3 - Változók

A változók azok a helyek, ahol az értékek tárolhatóak. A Lua nyelvben háromféle
változó létezik: globális változók, lokális változók és tömb mezők.

Egy egyszerű név jelölhet globális vagy lokális változót is (vagy egy függvény
szabályszerű paraméterét, ahol így egy egyéni lokális változót jelent):

 var ::= Name

A név jelzi az azonosítót, a §2.1. pontban foglaltak szerint.

A változók alapértelmezés szerint globálisak, hacsak nem szándékosan lokálisként
vannak deklarálva. (lásd §2.4.7). A lokális változók lexikális kiterjedésűek: az adott
hatáskörön belül definiált függvényekben szabadon elérhetőek (lásd §2.6).

Egy változó az első értékadás előtt nil értékkel rendelkezik.

A szögletes zárójelek egy tömb indexét fejezik ki:

 var ::= prefixexp `[´ exp `]´

A globális változók és tömb mezők elérésének módja megváltoztatható a
metatömbök segítségével. Az indexelt t[i] változó elérése ugyanaz, mint
a gettable_event(t,i)hívás. (lásd a §2.8 fejezetben a gettable_event függvény
leírását. Ez a függvény nem definiálható és nem elérhető a Lua nyelvből, itt csak
magyarázó jelleggel szerepel.)

A var.Name kifejezés ugyanazt jelenti, mint a var["Name"]:

 var ::= prefixexp `.´ Name

Minden globális változó egy általános Lua tömb mezőjeként jön létre, amit környezeti
tömböknek vagy környezetek nevezünk (lásd §2.9). Minden egyes függvény saját
hivatkozással kapcsolódik a környezethez, így az adott függvényben minden globális
változó erre a környezeti tömbre fog hivatkozni. Egy függvény a létrehozásakor

megörökli a környezetet attól a függvénytől, amely azt létrehozta. Egy Lua függvény
környezeti tömbjének lekérésére a getfenv függvény szolgál. Ennek
megváltoztatására a setfenv hívás használható. (A C függvények környezetei csak a
debug függvénytáron keresztül módosíthatóak (lásd §5.9).)

Az x globális változó elérése ugyanaz, mint az _env.x hívás, ami szintén egyenlő a

 gettable_event(_env, "x")

hívással, ahol az _env a futó függvény környezete. (Lásd a §2.8 fejezetben
a gettable_event függvény leírását. Ez a függvény nem definiálható és nem hívható
meg a Lua-ból. Ehhez hasonlóan, az _env változó sem definiálható a Lua nyelvből, itt
csak magyarázó jelleggel szerepel.)

2.4 - Utasítások

A Lua az utasítások majdnem egyezményes halmazát támogatja, a Pascal vagy C
nyelvekhez hasonlóan. Ez a halmaz tartalmazza az értékadásokat, vezérlő
struktúrákat, függvényhívásokat és változó deklarációkat.

2.4.1 - Csonkok

A végrehajtás mértékegysége a Lua nyelvben a csonk. A csonk az utasítások
egyszerű sorozata, melyek végrehajtása sorrendben történik. Minden utasítást
opcionálisan egy pontosvessző követhet:

 chunk ::= {stat [`;´]}

Üres utasítás nem létezik, így a ';;' kifejezés érvénytelen.

A Lua a csonkot egy névtelen függvény testeként kezeli, melynek változó számú
argumentuma van (lásd §2.5.9). Így a csonk létrehozhat lokális változókat,
argumentumokat kaphat, és visszatérési értékkel is rendelkezhet.

A csonk tárolható fájlban vagy a host programban karakterláncként is. Egy csonk a
végrehajtásakor először elő-fordítódik és utasításokká alakul a virtuális gép számára,
majd a lefordított kódot végrehajtja a virtuális gép értelmezője.

A csonkok lehetnek elő-fordítottak is, bináris formában; további információkkal a luac
program szolgál. A forráskódként és lefordított programként szereplő programok
felcserélhetőek; a Lua automatikusan észleli a fájl típusát és ettől függően viselkedik.

2.4.2 - Blokkok

A blokk állítások sorozatából áll; a blokk szintaktikai felépítése ugyanaz, mint a
csonké:

 block ::= chunk

Egy blokk meghatározható nyílt módon is, ebben az esetben csak egy állítást
eredményez:

 stat ::= do block end

A nyílt blokkok a lokális deklarációk hatáskörének vezérlésekor lehetnek hasznosak.
A nyílt blokkok arra is használhatóak, hogy egy másik blokkban return vagy break
utasítást helyezzünk el (lásd §2.4.4).

2.4.3 - Értékadás

A Lua nyelvben engedélyezett a többszörös értékadás. Ebben az esetben az
értékadás szintaktikája a következőképpen alakul: baloldalon szerepel a változók
listája, jobboldalon pedig az értékek listája. Az elemek mindkét oldalon vesszővel
vannak elválasztva:

 stat ::= varlist1 `=´ explist1
 varlist1 ::= var {`,´ var}
 explist1 ::= exp {`,´ exp}

A kifejezések a §2.5. pontban vannak tárgyalva.

Az értékadás előtt az értékek listája a változók listájához lesz igazítva. Ha több érték
van megadva a szükségesnél, a felesleges értékek figyelmen kívül lesznek hagyva.
Ha kevesebb érték van a szükségesnél, az értékek listája ki lesz bővítve annyi nil
értékkel, amennyi szükséges. Ha a kifejezések listája egy függvényhívással
végződik, akkor ennek a hívásnak az összes visszatérési értéke a megadott
változó(k)ba kerül(nek), még az igazítás előtt (kivéve amikor a hívás zárójelben
szerepel; lásd §2.5).

Az értékadási utasítás először kiértékeli az összes kifejezést, majd csak ezután hajtja
végre az értékadást. Így a következő kód:

 i = 3
 i, a[i] = i+1, 20

az a[3] mezőt 20-ra állítja anélkül, hogy az a[4] mező értékét módosítaná, mivel i
az a[i] kifejezésben kiértékelődött (3-nak) még azelőtt, hogy a 4-es értéket
megkapná. Hasonlóan, a következő sor:

 x, y = y, x

felcseréli x és y értékét.

A globális változók és tömb mezők értékadásának tulajdonságai metatömbök
segítségével megváltoztathatóak. Egy indexelt tömb értékadásakor a t[i] = val
kifejezés megegyezik a settable_event(t,i,val) kifejezéssel. (Lásd a §2.8
fejezetben a settable_event függvény leírását. Ez a függvény nem definiálható és
nem hívható meg a Lua-ból, itt csak magyarázó jelleggel szerepel.)

A globális változók értékadása (x = val) megegyezik az _env.x = val értékadással,
amely megegyezik a

 settable_event(_env, "x", val)

hívással, ahol _env a futó függvény környezete. (az _env változó nem definiálható a
Lua nyelvből, itt csak magyarázó jelleggel szerepel.)

2.4.4 - Vezérlő szerkezetek

A vezérlő szerkezetek: az if, a while, és a repeat a szokásos tulajdonságokkal
rendelkeznek és a már ismerős szintaktikát használják:

 stat ::= while exp do block end
 stat ::= repeat block until exp
 stat ::= if exp then block {elseif exp then block} [else block] end

A Lua nyelvben is létezik for utasítás, két hatókörben is (lásd §2.4.5).

Egy vezérlő szerkezet feltételes kifejezése bármilyen visszatérési értékkel
rendelkezhet. Mind a false, mind a nil érték hamisnak minősül. Minden nil-től és
false-tól különböző érték igaznak minősül (így tehát, bármilyen szokatlan, a 0 szám
és az üres karakterlánc is igaznak minősül).

A repeat–until ciklus nem ér véget az until kulcsszónál, hanem csak annak feltétele
után. Emiatt a feltétel felhasználhat olyan lokális változókat is, amelyek a ciklus
blokkjában lettek deklarálva.

A return utasítás szolgál arra, hogy az egyes függvények és csonkok (amely csak
egy függvényből áll) visszatérési értékekkel rendelkezhessenek. A függvényeknek és
a csonkoknak lehet több visszatérési értékük is, ebben az esetben a return utasítás
szintakszisa a következő:

 stat ::= return [explist1]

A break utasítás egy while, repeat vagy for ciklus megszakítására szolgál, a ciklus
utáni következő utasításra ugorva:

 stat ::= break

A break mindig a legbelső ciklust szakítja meg.

A return és break utasítások egy blokkban csak a legutolsó helyen szerepelhetnek.
Ha nagyon fontos, hogy a return vagy a break a blokk közepén szerepeljen, akkor
egy nyílt belső ciklust kell használni, mivel a do return end és a do break end
kifejezésekben a return és break utasítások már az utolsó helyen szerepelnek a
(belső) blokkjukban.

2.4.5 - For utasítás

A for utasításnak két formulája létezik: egy numerikus (számbeli) és egy generikus
(általános).

A numerikus for ciklus addig ismétli a megadott kódrészletet, amíg a vezérlő változó
végigfut egy számtani soron. Ennek a szintaktikája a következő:

 stat ::= for Name `=´ exp `,´ exp [`,´ exp] do block end

A block name-ig ismétlődik, amelynek kezdő értéke az első exp, záró értéke a
második exp, lépésköze pedig a harmadik exp. Pontosabban, a következő for
utasítás:

 for var = e1, e2, e3 do block end

megegyezik a következő kóddal:

 do
 local _var, _limit, _step = tonumber(e1), tonumber(e2), tonumber(e3)
 if not (_var and _limit and _step) then error() end
 while (_step>0 and _var<=_limit) or (_step<=0 and _var>=_limit) do
 local var = _var
 block
 _var = _var + _step

 end
end

A következőket érdemes még megjegyezni:

• Mindhárom vezérlőkifejezés csak egyszer kerül kiértékelésre, a ciklus kezdete
előtt. Mindhárom eredményének számnak kell lennie.

• A _var, a _limit, és a _step nem létező változók, csak magyarázó jelleggel
szerepelnek.

• Ha a harmadik kifejezés (a lépésköz) hiányzik, 1-es lépésköz lesz használva.
• A break utasítással megszakítható a for ciklus.
• A ciklusban létrehozott var változó lokális a ciklus számára; nem használható

a for vége után, vagy ha az félbeszakad. Ha szükség van erre a változóra,
akkor egy másik változóba kell helyezni mielőtt a ciklus megszakad vagy
véget ér.

A generikus for utasítás függvényeken használható, és iterátornak nevezik. Minden
egyes iterációkor az iterátor függvény lesz meghívva hogy egy új értéket generáljon,
így a ciklus akkor áll meg, ha ez a visszatérési érték nil. A generikus for ciklus
szintaktikája a következő:

 stat ::= for namelist in explist1 do block end
 namelist ::= Name {`,´ Name}

A következő for utasítás:

 for var_1, ˇˇˇ, var_n in explist do block end

megegyezik a következő kóddal:

 do
 local _f, _s, _var = explist
 while true do
 local var_1, ˇˇˇ, var_n = _f(_s, _var)
 _var = var_1
 if _var == nil then break end
 block
 end
 end

A következőket érdemes még megjegyezni:

• Az explist csak egyszer kerül kiértékelésre. Ez egy iterátor függvényt, egy
állapotot és az iterátor változóhoz tartozó kezdőértéket eredményez.

• Az _f, az _s, és az _var nem létező változók, a nevek itt csak magyarázó
jelleggel szerepelnek.

• A break utasítással megszakítható a for ciklus.
• A ciklusban létrehozott var_i változó lokális a ciklus számára; nem

használható a for vége után, vagy ha az félbeszakad. Ha szükség van erre a
változóra, akkor egy másik változóba kell helyezni mielőtt a ciklus megszakad
vagy véget ér.

2.4.6 - Függvényhívás utasításként

A lehetséges mellék-műveletek engedélyezéséhez a függvények utasításként is
végrehajthatóak:

 stat ::= functioncall

Ebben az esetben a visszatérési értékek figyelmen kívül lesznek hagyva. A
függvényhívások részletesebben a §2.5.8 fejezetben vannak tárgyalva.

2.4.7 - Lokális deklarációk

A lokális változók egy blokkon belül bárhol deklarálhatóak. A deklaráció kezdeti
értékadás is lehet egyben:

 stat ::= local namelist [`=´ explist1]

Ha értékadás is történik, akkor annak szintaktikája megegyezik a többszörös
értékadással (lásd §2.4.3). Egyébként minden változó nil értékkel lesz létrehozva.

A csonk is egyfajta blokk (lásd §2.4.1), így egy nyílt blokkon kívüli csonkban lokális
változók deklarálhatóak. Ezeknek a lokális változóknak a hatóköre a csonk végéig
terjed.

A lokális változók láthatósági szabályai a §2.6. részben találhatóak.

2.5 - Kifejezések

Az alap kifejezések a Lua nyelvben a következőek:

 exp ::= prefixexp
 exp ::= nil | false | true
 exp ::= Number
 exp ::= String
 exp ::= function
 exp ::= tableconstructor
 exp ::= `...´
 exp ::= exp binop exp
 exp ::= unop exp
 prefixexp ::= var | functioncall | `(´ exp `)´

A számok és a literális karakterláncok a §2.1 fejezetben vannak leírva; a változók
a §2.3 fejezetben; a függvénydefiníciók a §2.5.9 fejezetben; a függvényhívások
a §2.5.8 fejezetben; a tömb konstruktorok a §2.5.7 fejezetben. A vararg kifejezések,
amelyeket három pont jelöl ('...'), csak a vararg függvényekben használhatóak, ezek
a §2.5.9 fejezetben vannak leírva.

A bináris operátorok számtani műveletei jelekből (lásd §2.5.1), relációs műveleti
jelekből (lásd §2.5.2), logikai operátorokból (lásd §2.5.3), és az összefűző
operátorból (lásd §2.5.4) állnak. Az unáris operátorok csoportjába tartozik az unáris
minusz (lásd §2.5.1), az unáris not (lásd §2.5.3), valamint az unáris hossz operátor
(lásd §2.5.5).

Mind a függvényhívások, mind a vararg kifejezések több értéket is
eredményezhetnek. Ha a kifejezés utasításként fut le (lásd §2.4.6) (csak
függvényhívásoknál elérhető), akkor a visszatérési lista nulla elemre korlátozódik,
tehát az összes visszatérési érték figyelmen kívül lesz hagyva. Ha egy kifejezés egy
másik kifejezésen belül, vagy egy kifejezés-lista közepén szerepel, akkor a
visszatérési értékek csak egy elemre korlátozódnak, így az elsőn kívül az összes
visszatérési érték figyelmen kívül lesz hagyva. Ha egy kifejezés a kifejezéslista utolsó
eleme, akkor nem hajtódik végre a korlátozás, kivéve, ha a hívás zárójelekkel
történik.

Következzen néhány példa:

 f() -- 0 eredményre korlátozva
 g(f(), x) -- f() 1 eredményre korlátozva
 g(x, f()) -- a g x-et és az f() függvény visszatérési értékeit kapja
 a,b,c = f(), x -- f() 1 eredményre korlátozva (c nil lesz)
 a,b = ... -- a kapja az első vararg paramétert, b kapja
 -- a másodikat (a és b is lehet nil, ha nincs megfelelő vararg
paraméter)
 a,b,c = x, f() -- f() 2 eredményre korlátozva
 a,b,c = f() -- f() 3 eredményre korlátozva
 return f() -- f() összes visszatérési értéke visszatér
 return ... -- Az összes fogadott vararg paraméter visszatér
 return x,y,f() -- visszatérési értéke x, y, és az f() függvény
visszatérési értékei
 {f()} -- visszatérési értéke az f() függvény visszatérési értékeiből
alkotott tömb
 {...} -- visszatérési értéke a vararg paraméterekből alkotott tömb
 {f(), nil} -- f() 1 eredményre korlátozva

Egy zárójelbe tett kifejezés mindig csak egy értékkel tér vissza. Így a (f(x,y,z))
akkor is csak egy értékkel tér vissza, ha az f függvény egyébként több visszatérési

értékkel is rendelkezik. (Az (f(x,y,z)) hívás eredménye tehát az f függvény első
visszatérési értéke, vagy nil, ha nincs visszatérési érték.)

2.5.1 - Számtani műveleti jelek

A Lua nyelvben elérhetőek a szokásos számtani műveleti jelek: a bináris +
(összeadás), - (kivonás), * (szorzás), / (osztás), % (modulo), és a ^ (hatványozás);
az unáris - (negáció). Ha az operandusok számok, vagy olyan karakterláncok,
amelyek számmá alakíthatóak (lásd §2.2.1), akkor a műveletek a szokásos
tulajdonságokkal rendelkeznek. Hatványozáskor bármilyen hatványkitevő
használható. Például, az x^(-0.5) kifejezés x négyzetgyökének negáltját
eredményezi. A modulo művelet definíciója a következő:

 a % b == a - math.floor(a/b)*b

Így ez az osztás maradékát adja eredményül, amely a hányadost a mínusz végtelen
irányába kerekíti.

2.5.2 - Relációs műveleti jelek

A Lua nyelv relációs műveleti jelei a következőek:

 == ~= < > <= >=

Ezek az operátorok mindig false vagy true értéket eredményeznek.

Az egyenlőség (==) operátor először összehasonlítja az operandusok típusát. Ha az
eredmények eltérőek, az eredmény false. Egyéb esetben az operandusok értékei
kerülnek összehasonlításra. A számok és a karakterláncok összehasonlítása a
szokványos módon történik. Az objektumok (table, userdata, thread típusok és
függvények) a hivatkozásaik által lesznek összehasonlítva: két objektum csak akkor
tekinthető egyenlőnek, ha mindkettő ugyanaz az objektum. Minden alkalommal,
amikor egy új objektum létrejön (table, userdata, thread típus vagy függvény), ez az
új objektum mindig különbözni fog az előzően létrehozott objektumoktól.

A Lua table és userdata típusainak összehasonlítása megváltoztatható a "eq"
metaeljárás használatával (lásd §2.8).

A §2.2.1 pontban szereplő átalakítási szabályok nem vonatkoznak az egyenlőségi
összehasonlításra. Emiatt a "0"==0 értéke false, valamint a t[0] és a t["0"]
azonosítók két különböző mezőt határoznak meg a tömbben.

A ~= művelet az egyenlőség (==) tagadása.

A rendező operátorok a következőképpen működnek: ha mindkét argumentum szám,
akként lesznek összehasonlítva. Ha mindkét paraméter karakterlánc, az
összehasonlítás a helyi beállításoknak megfelelően fog lezajlani. Egyéb esetben a
Lua megpróbálja meghívni az "lt" vagy az "le" metaeljárást (lásd §2.8).

2.5.3 - Logikai operátorok

A logikai operátorok a Lua nyelvben az and (és), or (vagy), és a not (nem). A vezérlő
szerkezetekhez hasonlóan (lásd §2.4.4) minden logikai operátor a false-t és a nil-t
hamisnak, minden egyéb értéket igaznak tekint.

A not negációs operátor mindig false vagy true értékkel tér vissza. Az and
konjunktív (egyesítő) operátor visszatérési értéke az első argumentuma, ha az false
vagy nil; egyéb esetben az and visszatérési értéke a második paraméter. Az or
diszjunktív (szétválasztó) operátor visszatérési értéke az első argumentum, ha annak
értéke nil-től és false-tól különbözik, egyébként a visszatérési értéke a második
argumentum. Mind az and, mind az or gyorsított kiértékelést használ, azaz a
második operandus csak akkor kerül kiértékelésre, ha az valóban szükséges.
Következzen néhány példa:

 10 or 20 --> 10
 10 or error() --> 10
 nil or "a" --> "a"
 nil and 10 --> nil
 false and error() --> false
 false and nil --> false
 false or nil --> nil
 10 and 20 --> 20

(a fenti leírásban a --> jelzi az előtte lévő kifejezés eredményét.)

2.5.4 - Összefűzés

A karakterláncok összefűzésére szolgáló operátort a Lua nyelvben két ponttal jelölik
('..'). Ha mind a két operandus karakterlánc vagy szám, akkor azok a §2.2.1 pontban
leírt szabályok szerint karakterláncokká lesznek átalakítva. Egyéb esetben a "concat"
metaeljárás lesz meghívva (lásd §2.8).

2.5.5 - A hossz operátor

A hossz operátort az unáris # operátor jelöli. Egy karakterlánc hossza az elfoglalt
bájtok száma (mivel minden karakter egy bájtnak felel meg).

A t tömb hosszának értéke bármilyen n egész szám lehet, amely megfelel annak a
feltételnek, hogy t[n] nem nil és t[n+1] nil; továbbá ha t[1] nil, n értéke nulla is
lehet. Egy általános tömb esetén, ahol 1-től az adott n-ig nem nil értékek
szerepelnek, a hossz értéke pontosan n, azaz az utolsó érték indexe. Ha a tömb
"lyukas" (azaz nil érték(ek) vannak nem-nil értékek között), akkor a #t értéke
bármelyik nil értéket megelőző index lehet (tehát az első nil érték a tömb végét
jelenti).

2.5.6 - Precedencia

A műveleti jelek precedenciája (elsősége, sorrendje) a Lua nyelvben a következő
táblázatot követi, az alacsonyabbtól a magasabb prioritás felé haladva:

 or
 and

 < > <= >= ~= ==
 ..
 + -
 * / %
 not # - (unáris)
 ^

Természetesen zárójelek használatával módosítható a kifejezések sorrendje. Az
összefűző ('..') és a hatványozási ('^') operátorok jobbról asszociatívak. Minden más
bináris operátor balról asszociatív.

2.5.7 - Tömb konstruktorok

A tömb konstruktorok olyan kifejezések, amelyik tömböket hoznak létre. Minden
alkalommal, amikor egy konstruktor kiértékelődik, létrejön egy tömb. A konstruktorok
segítségével üres tömbök hozhatóak létre, vagy olyanok, amelyek előre
meghatározott mezőket tartalmaznak. A konstruktorok általános szintakszisa a
következő:

 tableconstructor ::= `{´ [fieldlist] `}´
 fieldlist ::= field {fieldsep field} [fieldsep]
 field ::= `[´ exp `]´ `=´ exp | Name `=´ exp | exp
 fieldsep ::= `,´ | `;´

Minden egyes [exp1] = exp2 kifejezés egy új bejegyzést ad a tömbhöz, exp1
kulccsal és exp2 értékkel. A name = exp formula ugyanazt jelenti, mint amit
a ["name"] = exp. Végül, az exp mezők megegyeznek az [i] = exp kifejezéssel,
ahol i egy 1-től induló, egymást követő egész számsorozatot jelent. Más formátumú
mezők nem befolyásolják ezt a számolást. Például:

 a = { [f(1)] = g; "x", "y"; x = 1, f(x), [30] = 23; 45 }

ugyanaz, mint a következő kód:

 do
 local t = {}
 t[f(1)] = g
 t[1] = "x" -- 1st exp
 t[2] = "y" -- 2nd exp
 t.x = 1 -- t["x"] = 1
 t[3] = f(x) -- 3rd exp
 t[30] = 23
 t[4] = 45 -- 4th exp
 a = t
 end

Ha a lista utolsó mezőjének exp formulája van és a kifejezés egy függvényhívás vagy
vararg kifejezés, akkor ezeknek a kifejezéseknek a visszatérési értékei folyamatosan
beépülnek ebbe a listába (lásd §2.5.8). Ez megelőzhető azzal, ha a függvényhívást
(vagy a vararg kifejezést) zárójelbe téve hívjuk meg (lásd §2.5).

A mezőlistának lehet egy opcionális elválasztója, kényelmi funkcióként a gép által
generált kód számára.

2.5.8 - Függvényhívások

A függvényhívásnak a Lua nyelvben a következő a szintaktikája:

 functioncall ::= prefixexp args

A függvény hívásakor először az előtag (prefixexp) és az argumentumok lesznek
kiértékelve. Ha az előtag típusa function, akkor a függvény a megadott
argumentumokkal meghívódik. Ellenkező esetben az előtag "call" metaeljárása lesz
meghívva, melynek első paramétere az előtag értéke, amelyet az eredeti
argumentumok követnek (lásd §2.8).

A következő formula:

 functioncall ::= prefixexp `:´ Name args

eljárások meghívására használható. A v:name(args) hívás ugyanaz, mint
a v.name(v,args), azzal a különbséggel, hogy a v csak egyszer lesz kiértékelve.

Az argumentumok szintaktikája a következő:

 args ::= `(´ [explist1] `)´
 args ::= tableconstructor
 args ::= String

A hívás előtt minden argumentum kifejezés kiértékelődik. Az f{fields} formátumú
hívás megfelel az f({fields}) kifejezésnek; ebben az esetben az argumentumok
listája egy új tömbnek felel meg. Az f'string' (vagy f"string" vagy f[[string]])
formátumú hívás megegyezik az f('string') hívással; ebben az esetben az
argumentumok listája egy literális karakterláncnak felel meg.

Egyetlen kivétel a háromféle Lua szintakszis alól, hogy nem használható újsor
karakter a '(' jel előtt függvényhívásnál. Ez a korlátozás megelőz néhány félreértést a
nyelvben. A következő kódrészlet

 a = f
 (g).x(a)

a Lua számára egyetlen utasítást fog jelenteni, a = f(g).x(a). Így, ha két
utasításként szeretnénk a fenti kódot felhasználni, pontosvesszővel kell elválasztani
őket. Ha az f függvényt közvetlenül szeretnénk meghívni, el kell távolítani az újsor
karaktert a (g) elől.

A return függvényhívás formátum neve véghívás. A Lua tökéletes véghívást
(vagy tökéletes végújrahívást) valósít meg: egy véghívásban a hívott függvény újra
felhasználja a hívó függvény verem bemenetét. Emiatt nincs korlátozás a program
által végrehajtható, egymásba ágyazott véghívások számát illetően. Azonban a
véghívás minden hibakeresési információt töröl a hívó függvényről. A véghívás csak
egyéni szintakszis esetén fordulhat elő, ahol a return argumentuma csak egy
függvényhívás; ez a szintakszis arra készteti a hívó függvényt, hogy a hívott

függvény visszatérési értékeivel térjen vissza. A következő példában véghívások
szerepelnek:

 return (f(x)) -- az eredmények száma 1-re korlátozva
 return 2 * f(x)
 return x, f(x) -- további eredmények
 f(x); return -- a visszatérési értékek figyelmen kívül hagyva
 return x or f(x) -- az eredmények száma 1-re korlátozva

2.5.9 - Függvénydefiníciók

A függvénydefiníció szintakszisa a következő:

 function ::= function funcbody
 funcbody ::= `(´ [parlist1] `)´ block end

A következő szintakszis leegyszerűsíti a függvénydefiníciókat:

 stat ::= function funcname funcbody
 stat ::= local function Name funcbody
 funcname ::= Name {`.´ Name} [`:´ Name]

A következő kifejezés:

 function f () body end

a következőképpen fordítható:

 f = function () body end

A következő kifejezés:

 function t.a.b.c.f () body end

pedig a következőképpen:

 t.a.b.c.f = function () body end

A következő kifejezés

 local function f () body end

megfelel a következőnek:

 local f; f = function () body end

és nem pedig ennek:

 local f = function () body end

(Ez a különbség csak akkor számít, ha a függvénytest f-re hivatkozik.)

A függvénydefiníció egy végrehajtható kifejezés, amely értékének típusa function.
Amikor a Lua elő-fordít egy csonkot, akkor annak az összes függvényteste
előfordításra kerül. Így, amikor a Lua végrehajt egy függvénydefiníciót, a függvény
véglegesítődik (vagy lezáródik). Ez a függvényhivatkozás (vagy zárlat) a kifejezés
végleges értéke lesz. Azonos függvények különböző hivatkozásai különböző külső
lokális változókat is elérhetnek, valamint különböző környezeti tömbjeik is lehetnek.

A paraméterek lokális változókként viselkednek, amelyek az argumentum értékeivel
jönnek létre:

 parlist1 ::= namelist [`,´ `...´] | `...´

Egy függvény meghívásakor az argumentumok listája a paraméterek listájának
számához igazodik, kivéve ha a függvény variadikus vagy vararg függvény, amelyet
a paraméterlista végén három pont jelöl ('...'). A vararg függvény nem korlátozza az
argumentumok listáját, éppen ellenkezőleg, összegyűjti az összes extra
argumentumot és a három pont formában leírt vararg kifejezésen keresztül a
függvényhez rendeli ezeket. Ennek a kifejezésnek az értéke az aktuális extra
argumentumok listája, a több visszatérési értékkel rendelkező függvényhez
hasonlóan. Ha a vararg kifejezés egy másik kifejezésen belül szerepel, vagy a
kifejezések közben, akkor a visszatérési lista egy elemre korlátozódik. Ha a kifejezés
a lista utolsó eleme, akkor nem lesz korlátozás végrehajtva (kivéve ha a hívás
zárójelbe téve történik).

Példaként itt szerepel néhány ilyen definíció:

 function f(a, b) end
 function g(a, b, ...) end
 function r() return 1,2,3 end

Ezek után a következő argumentumok hozzárendelése a paraméterekhez és a
vararg kifejezéshez a következőket eredményezi:

 PARAMÉTEREK HÍVÁSA

 f(3) a=3, b=nil
 f(3, 4) a=3, b=4
 f(3, 4, 5) a=3, b=4
 f(r(), 10) a=1, b=10
 f(r()) a=1, b=2
 g(3) a=3, b=nil, ... --> (semmi)
 g(3, 4) a=3, b=4, ... --> (semmi)
 g(3, 4, 5, 8) a=3, b=4, ... --> 5 8
 g(5, r()) a=5, b=1, ... --> 2 3

Az eredmények a return utasítás használatával tértek vissza (lásd §2.4.4). Ha a
vezérlés úgy éri el a függvény végét, hogy közben nem talál return utasítást, akkor a
függvénynek nincs visszatérési értéke.

A kettőspont jellel eljárások határozhatóak meg, ebben az esetben a függvénynek
van egy implicit extra paramétere, a self. Így a következő implicit utasítás

 function t.a.b.c:f (params) body end

megfelel a következőnek:

 t.a.b.c.f = function (self, params) body end

2.6 - Láthatósági szabályok

A Lua egy lexikális hatókörű nyelv. A változók hatóköre a deklarációk utáni első
utasítással kezdődik, és a deklarációt tartalmazó legbelső blokk végéig tart.
Következzen egy példa:

 x = 10 -- globális változó
 do -- új blokk
 local x = x -- új 'x', értéke 10
 print(x) --> 10
 x = x+1
 do -- újabb blokk
 local x = x+1 -- egy újabb 'x'
 print(x) --> 12
 end
 print(x) --> 11
 end
 print(x) --> 10 (a globális)

Jegyezzük meg, hogy a local x = x típusú deklarációk esetén az új x még nem lesz
deklarálva ebben a hatókörben, és így a második x a külső változóra hivatkozik.

A lexikális láthatósági szabályok miatt a lokális változókat az őket deklaráló
függvények szabadon elérhetik. Egy belső függvény által használt lokális változó
neve upvalue (felső érték), vagy külső lokális változó, a belső függvényen belül.

Ne felejtsük, hogy a local utasítás minden egyes végrehajtásakor új lokális változók
jönnek létre. Nézzük a következő példát:

 a = {}
 local x = 20
 for i=1,10 do
 local y = 0
 a[i] = function () y=y+1; return x+y end
 end

A ciklus tízszer hajtódik végre (azaz, tíz alkalommal fut le a névtelen függvény).
Minden egyes lépés egy különböző y változót használ, míg az x minden lépésben
ugyanaz lesz.

2.7 - Hibakezelés

Mivel a Lua egy beágyazott kiterjesztett nyelv, minden Lua művelet a host program C
kódjából indul, amely meghívja a Lua eljáráskönyvtár egyik függvényét (lásd
lua_pcall). Amikor a Lua hibát észlel a fordítás vagy a futtatás közben, a vezérlés
visszatér a C-hez, ami megteheti a szükséges intézkedéseket (például kiírja a
hibaüzenetet).

A Lua kód közvetlenül is generálhat hibát az error függvény meghívásával. Ha a
hibákat a Lua-n belül szeretnénk lekezelni, használjuk a pcall függvényt.

2.8 - Metatömbök

A Lua-ban minden értéknek lehet metatömbje. Ez a metatömb egy átlagos Lua tömb,
amely megváltoztatja az eredeti érték viselkedését egyes meghatározott műveletek
közben. A metatömb megfelelő mezőinek beállításával egyes műveletek jó néhány
tulajdonsága megváltoztatható. Például amikor egy összeadás hajtódik végre egy
nem szám típusú értéken, a Lua ellenőrzi a változó metatömbjének "__add" mezőjét.
Ha a Lua talál ilyet, akkor meghívja ezt a függvényt, hogy hajtsa végre az
összeadást.

A metatömbök kulcsait eseménynek, az értékeit metaeljárásnak nevezzük. Az előző
példában az esemény az "add", a metaeljárás pedig a függvény, amely végrehajtja
az összeadást.

A getmetatable függvény segítségével a metatömbök bármikor megtekinthetőek.

A setmetatable függvény használatával a metatömbök lecserélhetőek. Más típusok
metatömjbei nem megváltoztathatóak a Lua-ból (kivéve a debug eljáráskönyvtárból);
erre a C API-t kell használni.

A tömböknek és az userdata típusoknak egyéni metatömbjeik vannak (noha több
tömb és userdata is osztozhat ugyanazon a metatömbön); az összes többi értéknek
típusonként csak egy metatömbje lehet. Így csak egy metatömbje lehet az összes
karakterláncnak, egy az összes számnak, stb.

Egy metatömb befolyásolhatja egy objektum viselkedését a számtani műveletek, a
rendező összehasonlítások, az összefűzések, a hossz operátor használata és az
indexelés közben. Egy metatömb azt is meghatározhatja, hogy egy függvény
lefusson, amikor a szemétgyűjtő algoritmus lefut egy userdata típuson. A Lua
ezekhez a műveletekhez egy speciális kulcsot rendel, amit eseménynek nevezünk.
Amikor a Lua végrehajt egy ilyen műveletet egy értéken, ellenőrzi, hogy az érték
metatömbjében szerepel -e a megfelelő esemény. Ha igen, akkor a kulcshoz rendelt
érték (a metaeljárás) szabja meg, hogy a Lua hogyan hajtsa végre a műveletet.

A metatömbök a lenti listában szereplő műveleteket tudják befolyásolni. Minden
műveletet a megfelelő név azonosít. A műveletekhez tartozó kulcs egy kettős
aláhúzással ('__') kezdődő karakterlánc; például az "add" (összeadás) művelethez az
"__add" kulcs tartozik. Ezeknek a műveleteknek jelentéstartalma jobban
értelmezhető egy Lua függvényen keresztül, amelyik megadja az értelmezőnek a
művelet végrehajtásának menetét.

Az itt szereplő Lua kódrészletek csak illusztrációk; a valódi viselkedés az
értelmezőben bonyolultabb kódokkal lett definiálva és az sokkal hatásosabb mint ez
a szimuláció. Minden, ebben a leírásban szereplő függvény (rawget, tonumber, stb.)
részletesen le van írva az §5.1 fejezetben. Egy adott objektum metaeljárásának
lekérésére a következő kifejezés használható:

 metatable(obj)[event]

Amely így olvasandó:

 rawget(getmetatable(obj) or {}, event)

Tehát a metaeljárások lekérése nem hív meg másik metaeljárást, és a metatömb
nélküli objektumok elérése sem lesz sikertelen (az eredmény egyszerűen nil lesz).

• "add": a + művelet.

Az alább szereplő getbinhandler függvény határozza meg, hogy a Lua
hogyan választja ki a bináris művelet kezelőjét. Először a Lua megvizsgálja az
első operandust. Ha ennek típusa nem határoz meg kezelőt a művelethez,
akkor a Lua a második operandust vizsgálja meg.

 function getbinhandler (op1, op2, event)
 return metatable(op1)[event] or metatable(op2)[event]
 end

Ennek a függvénynek a használatával az op1 + op2 művelet viselkedése a
következő lesz:

 function add_event (op1, op2)
 local o1, o2 = tonumber(op1), tonumber(op2)
 if o1 and o2 then -- mindkét operandus szám?
 return o1 + o2 -- a '+' itt egyszerű összeadást jelent
 else -- legalább az egyik operandus nem szám
 local h = getbinhandler(op1, op2, "__add")
 if h then
 -- a kezelő meghívása mindkét operandushoz
 return h(op1, op2)
 else -- nincs elérhető kezelő: alapértelmezett viselkedés
 error(ˇˇˇ)
 end
 end
 end

• "sub": a - művelet. A viselkedése hasonló az "add" (összeadás) művelethez.
• "mul": a * művelet. A viselkedése hasonló az "add" (összeadás) művelethez.
• "div": a / művelet. A viselkedése hasonló az "add" (összeadás) művelethez.
• "mod": a % művelet. A viselkedése hasonló az "add" (összeadás) művelethez,

amely megfelel az o1 - floor(o1/o2)*o2 primitív műveletnek.
• "pow": az ^ (exponencialitás) művelet. A viselkedése hasonló az "add"

(összeadás) művelethez, amely megfelel a pow (a C math
programkönyvtárából) primitív műveletnek.

• "unm": az unáris - művelet.

 function unm_event (op)
 local o = tonumber(op)
 if o then -- az operandus szám?
 return -o -- '-' a primitív 'unm'
 else -- az operandus nem szám.
 -- kezelő keresése az operandushoz

 local h = metatable(op).__unm
 if h then
 -- kezelő meghívása az operandussal
 return h(op)
 else -- nincs elérhető kezelő: alapértelmezett viselkedés
 error(ˇˇˇ)
 end
 end

 end

• "concat": a .. (összefűzés) művelet.

 function concat_event (op1, op2)
 if (type(op1) == "string" or type(op1) == "number") and
 (type(op2) == "string" or type(op2) == "number") then
 return op1 .. op2 -- primitív karakterlánc-összefűzés
 else
 local h = getbinhandler(op1, op2, "__concat")
 if h then
 return h(op1, op2)
 else
 error(ˇˇˇ)
 end
 end
 end

• "len": a # művelet.

 function len_event (op)
 if type(op) == "string" then
 return strlen(op) -- primitív karakterlánc hossz
 elseif type(op) == "table" then
 return #op -- primitív tömb hossz
 else
 local h = metatable(op).__len
 if h then
 -- kezelő meghívása az operandussal
 return h(op)
 else -- nincs elérhető kezelő: alapértelmezett viselkedés
 error(ˇˇˇ)
 end
 end
 end

A tömb hosszának bővebb leírása a §2.5.5 fejezetben található.

• "eq": az == művelet. A getcomphandler függvény határozza meg, hogy
válasszon a Lua az összehasonlítási operátorokhoz metaeljárást. A
metaeljárás csak akkor használható, ha mindkét összehasonlítandó
objektumnak azonos a típusa, valamint ugyanazzal a metaeljárással
rendelkeznek a kiválasztott művelethez.

 function getcomphandler (op1, op2, event)
 if type(op1) ~= type(op2) then return nil end
 local mm1 = metatable(op1)[event]
 local mm2 = metatable(op2)[event]
 if mm1 == mm2 then return mm1 else return nil end

 end

Az "eq" esemény definiálása a következő:

 function eq_event (op1, op2)
 if type(op1) ~= type(op2) then -- különböző típusúak?
 return false -- különböző objektumok
 end
 if op1 == op2 then -- primitív egyenlőség?
 return true -- az objektumok ugyanazok
 end
 -- metaeljárás keresése
 local h = getcomphandler(op1, op2, "__eq")
 if h then
 return h(op1, op2)
 else
 return false
 end
 end

Az a ~= b kifejezés ugyanaz, mint not (a == b).

• "lt": a < művelet.

 function lt_event (op1, op2)
 if type(op1) == "number" and type(op2) == "number" then
 return op1 < op2 -- számbeli összehasonlítás
 elseif type(op1) == "string" and type(op2) == "string" then
 return op1 < op2 -- sorfolytonos összehasonlítás
 else
 local h = getcomphandler(op1, op2, "__lt")
 if h then
 return h(op1, op2)
 else
 error(ˇˇˇ);
 end
 end
 end

Az a > b kifejezés ugyanaz, mint a b < a.

• "le": a <= művelet.

 function le_event (op1, op2)
 if type(op1) == "number" and type(op2) == "number" then
 return op1 <= op2 -- számbeli összehasonlítás
 elseif type(op1) == "string" and type(op2) == "string" then
 return op1 <= op2 -- sorfolytonos összehasonlítás
 else
 local h = getcomphandler(op1, op2, "__le")
 if h then
 return h(op1, op2)
 else
 h = getcomphandler(op1, op2, "__lt")
 if h then
 return not h(op2, op1)
 else
 error(ˇˇˇ);

 end
 end
 end
 end

Az a >= b kifejezés ugyanaz, mint a b <= a. Megjegyzés: a "le" metaeljárás
hiányában a Lua megpróbálja az "lt" metaeljárást, azzal a feltétellel, hogy az a
<= b kifejezés ugyanaz, mint a not (b < a).

• "index": A table[key] formátumú tömbelérés.

 function gettable_event (table, key)
 local h
 if type(table) == "table" then
 local v = rawget(table, key)
 if v ~= nil then return v end
 h = metatable(table).__index
 if h == nil then return nil end
 else
 h = metatable(table).__index
 if h == nil then
 error(ˇˇˇ);
 end
 end
 if type(h) == "function" then
 return h(table, key) -- kezelő hívása
 else return h[key] -- vagy a művelet megismétlése
 end
 end

• "newindex": A table[key] = value formátumú tömbmező értékadás.

 function settable_event (table, key, value)
 local h
 if type(table) == "table" then
 local v = rawget(table, key)
 if v ~= nil then rawset(table, key, value); return end
 h = metatable(table).__newindex
 if h == nil then rawset(table, key, value); return end
 else
 h = metatable(table).__newindex
 if h == nil then
 error(ˇˇˇ);
 end
 end
 if type(h) == "function" then
 return h(table, key,value) -- kezelő hívása
 else h[key] = value -- vagy a művelet megismétlése
 end
 end

• "call": akkor hajtódik végre, amikor a lua meghív egy értéket.

 function function_event (func, ...)
 if type(func) == "function" then
 return func(...) -- primitív hívás
 else
 local h = metatable(func).__call

 if h then
 return h(func, ...)
 else
 error(ˇˇˇ)
 end
 end
 end

2.9 - Környezetek

A thread, function és userdata típusú objektumok a metatömbök mellett rendelkeznek
még egy hozzájuk rendelt tömbbel, amit a környezetüknek nevezünk. A
metatömbökhöz hasonlóan a környezetek is átlagos Lua tömbök, valamint több
objektum is osztozhat ugyanazon a környezeten.

A userdata típushoz rendelt környezeteknek nincs jelentősége a Lua számára. Ez
csak egy kényelmi funkció a programozók számára, hogy egy tömböt egy userdata
típushoz társítsanak.

A szálakhoz rendelt környezetek neve globális környezet. Ezek az alapértelmezett
környezetek a szál által létrehozott további szálak és nem-beágyazott függvények
számára (a loadfile, loadstring vagy load hívásokon keresztül), valamint a C kód
által közvetlenül is elérhetőek (lásd §3.3).

A C függvényekhez társított környezetek a C kódból közvetlenül elérhetőek (lásd
§3.3). Ezek az alapértelmezett környezetei a függvény által létrehozott további C
függvényeknek.

A Lua függvényekhez társított környezetek arra használatosak, hogy a függvényben
felhasznált globális változók elérése feloldható legyen (lásd §2.3). Ezek az
alapértelmezett környezetei a függvény által létrehozott további Lua függvényeknek.

Egy Lua függvény vagy egy futó szál környezete a setfenv hívással
megváltoztatható, illetve a getfenv hívással lekérhető. A többi objektum
környezetének módosításához (userdata, C függvény, más szálak) a C API-t kell
használni.

2.10 - Szemétgyűjtés

A Lua automatikus memóriakezeléssel rendelkezik. Ez azt jelenti, hogy
programozónak nem kell foglalkoznia sem a memória-lefoglalással, sem annak
felszabadításával, ha az objektumra már nincs többé szükség. A Lua
memóriakezelése úgy zajlik, hogy időről-időre lefuttatja a szemétgyűjtőt, amely
összegyűjti az élettelen (nem használt) objektumokat (tehát ezek az objektumok
többé nem lesznek elérhetőek a Lua-ból). A Lua-ban minden objektumra vonatkozik
az automatikus kezelés: a tömbökre, a userdata típusokra, a függvényekre, a
szálakra és a karakterláncokra is.

A Lua ún. megjelöl-és-seper gyűjtést végez. Két számot használ a szemétgyűjtő-
körök szabályozására: a szemétgyűjtő szünetet és a szemétgyűjtő lépésszorzót.

A szemétgyűjtő szünet szabályozza, hogy mekkora szünetet tartson az egyes
szemétgyűjtő körök indítása között. Magasabb értékek mellett a gyűjtés nem lesz
annyira erőteljes. 1-nél kisebb érték esetén a gyűjtő nem vár az egyes körök indítása
között. 2-es értéknél a gyűjtő addig vár, amíg az összmemória-használat a kör
indítása előtti érték duplája lesz.

A lépésszorzó szabályozza a gyűjtő relatív memóriafelszabadítási sebességét.
Magasabb érték mellett a gyűjtő erőteljesebb, de minden lépés méretét növeli. 1-nél
kisebb érték a gyűjtőt túl lassúvá teszi, és azt eredményezheti, hogy a gyűjtő soha
nem fejezi be a kört. Az alapértelmezett érték 2 jelenti azt, hogy a gyűjtő sebessége
kétszerese a memória-lefoglalásnak.

Ezek a számok megváltoztathatóak a C kódból a lua_gc hívással, illetve a Lua
kódból a collectgarbage hívással. Mindkettő százalékpontot kap paraméterként (így
a 100-as argumentum valódi értéke 1). Ezekkel a függvényekkel a gyűjtő is
közvetlenül szabályozható (pl. megállítható és újraindítható).

2.10.1 - Szemétgyűjtési metaeljárások

A C API használatával szemétgyűjtési metaeljárások rendelhetőek a userdata típusú
objektumokhoz (lásd §2.8). Ezek a metaeljárások véglegesítő néven is ismertek.
Ezek segítségével a Lua szemétgyűjtője összehangolható külső erőforrás-kezelőkkel
is (például fájlok bezárása, hálózati vagy adatbázis kapcsolatok lezárása, vagy a
saját memória felszabadítása).

Azok a felszabadításra jelölt userdata típusú objektumok, amelyeknek a
metatömbjében szerepel a __gc mező, nem kerülnek egyből törlésre, hanem a Lua
egy tömbbe helyezi őket. A gyűjtőkör lefutása után a Lua a következő függvénnyel
egyenértékű műveletet hajt végre minden egyes tömbben lévő userdata
objektummal:

 function gc_event (udata)
 local h = metatable(udata).__gc
 if h then
 h(udata)
 end
 end

Minden egyes szemétgyűjtő-kör befejezésekor a userdata objektumok véglegesítői a
létrehozásukhoz képest fordított sorrendben vannak meghívva, beleértve azokat is,
amelyek abban a körben lettek összegyűjtve. Így tehát az első véglegesítő
meghívásakor a hozzárendelt userdata objektum az, amelyik a programban az
utolsóként lett létrehozva.

2.10.2 - Gyenge tömbök

A gyenge tömb egy olyan tömb, amelynek elemei gyenge hivatkozások. Ezeket a
szemétgyűjtő figyelmen kívül hagyja. Másképpen kifejezve, ha egy objektumhoz csak
gyenge hivatkozások tartoznak, akkor a szemétgyűjtő törli ezt az objektumot.

Egy gyenge tömbnek lehet gyenge kulcsa, gyenge értéke, vagy mindkettő egyszerre.
A gyenge kulcsokkal rendelkező tömb esetén ezek a kulcsok törlésre kerülnek,
azonban az értékeik nem. Ha a tömbben mind a kulcs, mind az érték gyenge, akkor
sem a kulcs, sem az érték nem kerül törlésre. Minden egyéb esetben, ha a kulcs
vagy az érték eltávolításra kerül, az egész pár törölve lesz a tömbből. Egy tömb
gyengeségét a metatömbjében lévő __mode mező szabályozza. Ha a __mode mező
értéke egy olyan karakterlánc, amely tartalmazza a 'k' karaktert, a tömb kulcsai, ha a
'v' karaktert, akkor pedig az értékei gyengék.

Miután egy tömb metatömbként lesz használva, nem tanácsos a __mode mező
módosítása, különben azon gyenge tömbök viselkedése, amelyeket ez a metatömb
szabályoz, kiszámíthatatlan lesz.

2.11 - Korutinok

A Lua támogatja a korutinokat, másnéven az együttműködésen alapuló többszálú
működést. A korutin a Lua nyelvben egy végrehajtás különálló szálát képviseli. A
több szálat támogató rendszerek szálaitól eltérően a korutin csak szünetelteti a
végrehajtást a yield függvény hívásával.

Egy korutin a coroutine.create hívással hozható létre, amelynek egyetlen
paramétere a korutin fő függvénye. A create függvény csak létrehozza az új korutint,
és visszatér a kezelőjével (egy thread típusú objektummal), de nem indítja el annak
végrehajtását.

A coroutine.resume függvény első hívásakor, amelynek első argumentuma
a coroutine.create hívásból származó szál, a korutin megkezdi a fő függvény első
sorának végrehajtását. A fő függvény megkapja a coroutine.resume extra
argumentumait. A korutin az indítás után addig fut, amíg be nem fejeződik,
vagy szüneteltetve nem lesz.

Egy korutin kétféle módon fejeződhet be: normál módon, amikor a fő függvény
visszatér (explicit vagy implicit módon, az utolsó utasítás után); és abnormálisan, egy
lekezeletlen hiba esetén. Az első esetben a coroutine.resume visszatérési értéke
true, plusz a korutin fő függvénye által visszatérő értékek. Hiba esetén a visszatérési
érték false plusz egy hibaüzenet.

Egy korutin a coroutine.yield hívással szüneteltethető. Ekkor a
megfelelő coroutine.resume azonnal visszatér, még akkor is, ha a szüneteltetés egy
beágyazott függvényhívásból származik (tehát nem a fő függvényben, hanem a
főfüggvényből közvetve vagy közvetlenül hívott másik függvényből). Szüneteltetéskor
a coroutine.resume szintén true értékkel tér vissza, plusz a coroutine.yield
argumentumaival. A korutin következő folytatásakor a végrehajtás a szüneteltetés
helyétől folytatódik, a coroutine.yield megkapja a coroutine.resume extra
paramétereit.

A coroutine.wrap függvény is egy korutint hoz létre, hasonlóan, mint
a coroutine.create, de a visszatérési értéke nem a korutin maga, hanem egy olyan
függvény, amely minden hívásakor folytatja a korutint. Minden egyes argumentumot,

ami ehhez a függvényhez van társítva, megkap a coroutine.resume hívás. A
coroutine.wrap visszatérési értéke megegyezik a coroutine.resume visszatérési
értékével, kivéve az elsőt (a boolean típusú hibakódot). A coroutine.resume
függvénytől eltérően a coroutine.wrap nem kezeli le a hibákat; minden hiba a
hívónak lesz továbbítva.

Következzen egy példa:

 function foo (a)
 print("foo", a)
 return coroutine.yield(2*a)
 end

 co = coroutine.create(function (a,b)
 print("co-body", a, b)
 local r = foo(a+1)
 print("co-body", r)
 local r, s = coroutine.yield(a+b, a-b)
 print("co-body", r, s)
 return b, "end"
 end)

 print("main", coroutine.resume(co, 1, 10))
 print("main", coroutine.resume(co, "r"))
 print("main", coroutine.resume(co, "x", "y"))
 print("main", coroutine.resume(co, "x", "y"))

Futtatáskor ez a kód a következő kimenetet fogja eredményezni:

 co-body 1 10
 foo 2
 main true 4
 co-body r
 main true 11 -9
 co-body x y
 main true 10 end
 main false cannot resume dead coroutine

3 - Az Alkalmazás Programozási
Interfész

Ez a rész a Lua C API-ját tárgyalja, azaz a host program számára elérhető C
függvényeket, amelyek segítségével a host kommunikálhat a Lua-val. Minden API
függvény és a kapcsolódó típusok és konstansok a lua.h fejlécfájlban vannak
deklarálva.

Sok esetben akkor is a "függvény" kifejezést használjuk, ha néha az az API-ban
makroutasításként érhető el. Minden ilyen makró minden egyes argumentumát csak
egyszer használja fel (kivéve az elsőt, amely mindig egy Lua állapot), és így nem hajt
végre semmilyen rejtett mellékműveletet.

A legtöbb C eljáráskönyvtárhoz hasonlóan a LUA függvények sem ellenőrzik az
argumentumaik érvényességét vagy állapotát. Viszont ez a tulajdonság

megváltoztatható, ha a Lua-ban a luaconf.h fájlban található luai_apicheck makrót
tökéletes definícióval látjuk el.

3.1 - A verem

A Lua az értékek C-beli átadásához és átvételéhez virtuális vermet használ. Ebben a
veremben minden érték egy Lua értéket képvisel (nil, szám, karakterlánc, stb).

Amikor a Lua C hívást hajt végre, a hívott függvény egy új vermet kap, amely
különbözik mind az előző vermektől, mind az aktív C függvényekétől. Ez a verem
alapértelmezés szerint a C függvény argumentumait tartalmazza, valamint ebbe
kerülnek azok az eredmények, amelyek visszatérési értékek lesznek (lásd
lua_CFunction).

Kényelmi okokból a API-ban a legtöbb lekérdező művelet nem követi a pontos
veremszabályokat. Ehelyett indexek használatával bármely elem elérhető: a pozitív
index egy abszolút verempozíciót jelöl (1-től indulva), míg a negatív index a verem
tetejétől való távolságot jelöli. Pontosabban, egy n elemű verem esetén az 1-es index
jelenti az első elemet (azaz azt, amelyik elsőként került a verembe), az n index pedig
az utolsó elemet; a -1 is az utolsó elemet (tehát azt, amelyik a verem tetején van), a -
n index pedig az elsőt. Az index akkor tekinthető érvényesnek, ha az értéke 1 és a
verem teteje között fekszik (tehát ha igaz rá, hogy 1 ≤ abs(index) ≤ top).

3.2 - Verem méret

A Lua API-val történő kapcsolat közben a programozó felelőssége az egyenletesség
biztosítása. Azaz, a programozó feladata a veremtúlcsordulás lekezelése. A
lua_checkstack függvény használatával növelhető a verem mérete.

Amikor a Lua meghívja a C-t, megbizonyosodik arról, hogy elérhető -e legalább
LUA_MINSTACK verempozíció. A LUA_MINSTACK értéke 20, így a legtöbb esetben nem
kell aggódni a verem helyek miatt, ha csak nem a kód ciklusok használatával helyez
el elemeket a veremben.

A legtöbb lekérdező függvény bármilyen index értékeket elfogad az elérhető
veremméreten belül, tehát akkora értékig, amekkora a lua_checkstack értéknek be
lett állítva. Ezeknek az indexeknek a neve az elfogadható indexek.
Szabályszerűbben, az elfogadható indexet az alábbi formában definiálhatjuk:

 (index < 0 && abs(index) <= top) ||
 (index > 0 && index <= stackspace)

A 0 soha nem minősül elfogadható indexnek.

3.3 - Pszeudo-indexek

Ha nincs másképp feltüntetve, bármely függvény, amely érvényes indexeket elfogad,
egyben pszeudo-indexeknek is nevezzük, ami olyan Lua értéket képvisel, ami
elérhető a C kód számára, de nincs a veremben. A pszeudo-indexek a szál

környezetek, függvény környezetek, a registry és a C függvények felsőértékei
számára vannak fenntartva (lásd §3.4).

A szál környezete (ahol a globális változók vannak) mindig a LUA_GLOBALSINDEX, a
futó C függvény környezete pedig mindig a LUA_ENVIRONINDEX pszeudoindexnél
található.

A globális változók eléréséhez és megváltoztatásához szabványos tömbműveletek
használatosak a környezeti tömbön. Például, egy globális változó értékének
elérésére a következő kód használható:

 lua_getfield(L, LUA_GLOBALSINDEX, varname);

3.4 - C zárványok

Amikor egy C függvény létrejön, néhány érték társítható hozzá, ami így egy C
zárványt eredményez; ezek az értékek a felsőértékek, és a függvények számára
bármikor elérhetőek, amikor meghívódnak (lásd lua_pushcclosure).

Amikor egy C függvény meghívódik, a felsőértékek egy meghatározott pszeudo-
indexen helyezkednek el. Ezeket a pszeudoindexeket a lua_upvalueindex makró
hozza létre. Az első függvényhez társított érték a lua_upvalueindex(1) pozícióban
található, és így tovább. Bármely lua_upvalueindex(n) elérés esetén, ahol n
nagyobb, mint a pillanatnyi függvény felsőértékeinek a száma, egy elfogadható (de
nem érvényes) indexet eredményez.

3.5 - Registry

A Lua biztosít egy registryt is, amely egy előre definiált tömb, ahol a C kód bármilyen
szükséges Lua értéket tárolhat. Ez a tömb mindig a LUA_REGISTRYINDEX
pszeudoindex pozícióban található. Bármilyen C eljáráskönyvtár tárolhat adatot
ebben a tömbben, csak arra kell ügyelni, hogy ne legyen névütközés, azaz hogy más
kulcsokat használjon, mint a többi eljáráskönyvtár. Kulcsként ajánlatos az
eljáráskönyvtár nevét használni karakterlánc formában, vagy egy könnyű userdata
típust, amely a kódban a C objektum címzése.

Az egész típusú kulcsokat a registryben a hivatkozási mechanizmus használja,
amelyet a kisegítő eljáráskönyvtár hoz létre, így más célra nem használható.

3.6 - Hibakezelés C-ben

Belsőleg a Lua a C longjmp -ot használja a hibakezelésre. (Kivételek is
használhatóak a C++ kódban; lásd a luaconf.h fájlt.) Amikor a Lua valamilyen
hibába ütközik (mint például memória-lefoglalási hibák, típushibák, szintaktikai hibák
és futási hibák), egy hibához ér, azaz egy hosszú ugrást hajt végre. A védett
környezet a setjmp -ot használja visszaállítási pontok létrehozásához, bármilyen hiba
a legutolsó aktív visszaállítási ponthoz ugrik.

Majdnem az összes API függvény okozhat hibát, például egy memória-lefoglalási
hibán keresztül. A következő függvények védett módban futnak (azaz futásukkor egy
védett környezetet hoznak létre), így ezek soha nem okoznak hibát: lua_newstate,
lua_close, lua_load, lua_pcall, és lua_cpcall.

Egy C függvényen szándékosan is lehet hibát okozni a lua_error meghívásával.

3.7 - Függvények és típusok

A következőkben szerepelnek a C API függvényei és típusai, ABC sorrendben.

lua_Alloc

typedef void * (*lua_Alloc) (void *ud,
 void *ptr,
 size_t osize,
 size_t nsize);

A memória-lefoglalási függvény típusa, amit a Lua állapotok használnak. A lefoglaló
függvénynek hasonlóan kell működnie, mint a realloc, de nem pont ugyanúgy. Az
argumentumai az ud, amely a lua_newstate nem átlátszó mutatója; ptr, egy mutató,
amely a lefoglalandó/újrafoglalandó/felszabadítandó memóriablokkra mutat, osize, a
blokk eredeti mérete; nsize, a blokk új mérete. A ptr értéke akkor, és csakis akkor
NULL ha az osize értéke zéró. Amikor az nsize értéke zéró, a lefoglaló visszatérési
értéke NULL; ha osize nem zéró, akkor fel kell szabadítania a ptr által mutatott
blokkot. Amikor nsize nem zéró, a lefoglaló akkor, és csakis akkor tér vissza NULL
értékkel, ha nem tudta végrehajtani a kérést. Ha nsize nem zéró és osize zéró, a
lefoglalónak úgy kell működnie, mint a malloc-nak. Amikor sem az nsize sem az
osize nem zéró, a lefoglaló úgy működik, mint a realloc. A Lua feltételezi, hogy a
lefoglaló soha nem hibázik, ha osize >= nsize.

A következőkben a lefoglaló függvény egyszerű alkalmazása szerepel. Ezt a
kiegészítő eljáráskönyvtárban a lua_newstate használja.

 static void *l_alloc (void *ud, void *ptr, size_t osize, size_t nsize) {
 (void)ud; /* not used */
 (void)osize; /* not used */
 if (nsize == 0) {
 free(ptr); /* ANSI requires that free(NULL) has no effect */
 return NULL;
 } else
 /* ANSI requires that realloc(NULL, size) == malloc(size) */
 return realloc(ptr, nsize);
 }

lua_atpanic

lua_CFunction lua_atpanic (lua_State *L, lua_CFunction panicf);

Beállít egy új pánik függvényt, és visszatér a régivel.

Ha a védett környezeten kívül hiba keletkezik, a Lua először a pánik függvényt, majd
az exit(EXIT_FAILURE) függvényt hívja meg, így kilép a host alkalmazásba. A pánik
függvény használatával megelőzhető ez a kilépés, ha soha nem tér vissza (pl. csinál
egy hosszú ugrást).

A pánik függvény elérheti a hibaüzenetet is, ami a verem tetején található.

lua_call

void lua_call (lua_State *L, int nargs, int nresults);

Meghív egy függvényt.

Egy függvény meghívásához a következő szabályokat kell betartani: először, a
hívandó függvényt a verembe kell helyezni; utána az argumentumokat közvetlen
sorrendben, azaz az elsőt először. Végül meghívható a függvény a lua_call
segítségével; nargs a verembe tett argumentumok száma. Minden argumentum és a
függvény értéke a függvény hívásakor a veremből lesz kiemelve. A függvény
eredmények a függvény visszatérésekor a veremben lesznek elhelyezve. Az
eredmények számát a nresults szabja meg; ennek hiányában a nresults értéke
LUA_MULTRET. Ebben az esetben a függvény minden eredménye verembe lesz téve. A
Lua gondoskodik arról, hogy a visszatért értékek elférjenek a veremben. A függvény
eredményei közvetlen sorrendben lesznek elhelyezve a veremben (azaz a legelső
eredmény kerül bele először),így a hívás után a verem tetején a legutolsó eredmény
lesz.

A hívott függvény minden hibája felfelé lesz továbbítva (egy longjmp használatával).

A következő minta megmutatja, hogyan hívható meg a Lua kód a host programból:

 a = f("how", t.x, 14)

Ugyanez C-ben:

 lua_getfield(L, LUA_GLOBALSINDEX, "f"); /* hívandó függvény */
 lua_pushstring(L, "how"); /* első argumentum */
 lua_getfield(L, LUA_GLOBALSINDEX, "t"); /* Az indexelendő tömb */
 lua_getfield(L, -1, "x"); /* t.x eredményének elhelyezése (második arg) */
 lua_remove(L, -2); /* 't' eltávolítása a veremből */
 lua_pushinteger(L, 14); /* harmadik argumentum */
 lua_call(L, 3, 1); /* függvény hívása három argumentummal és egy
eredménnyel */
 lua_setfield(L, LUA_GLOBALSINDEX, "a"); /* az 'a' globális változó
beállítása */

A fenti kód "kiegyensúlyozott": a végére a verem az eredeti állapotába tér vissza. Ez
egy fontos tanács programozóknak.

lua_CFunction

typedef int (*lua_CFunction) (lua_State *L);

A C függvények típusa.

A Lua-val történő tökéletes kommunikáció érdekében a C függvénynek a következő
szabályokat kell követnie (ezek szabályozzák a paraméterek és az eredmények
átadását): A C függvény megkapja az argumentumokat a Lua-tól annak vermében,
követlen sorrendben (az első arumentum szerepel az első helyen). Így a függvény
indulásakor a lua_gettop(L) a függvény argumentumainak számával tér vissza. Az
első argumentum (ha van), az 1-es indexen, míg az utolsó a lua_gettop(L) indexen
helyezkedik el. Az eredmények visszatéréséhez a Lua-ba a C függvény a verembe
helyezi azokat közvetlen sorrendben (tehát az elsőt helyezi bele először), és az
eredmények számával tér vissza. A veremben található további értékeket a Lua
figyelmen kívül hagyja. Mint egy Lua függvény, a Lua által hívott C függvénynek is
számos visszatérési értéke lehet.

A következő példafüggvény a változó számú szám argumentumok átlagával és
összegével tér vissza:

 static int foo (lua_State *L) {
 int n = lua_gettop(L); /* argumentumok száma */
 lua_Number sum = 0;
 int i;
 for (i = 1; i <= n; i++) {
 if (!lua_isnumber(L, i)) {
 lua_pushstring(L, "incorrect argument to function 'average'");
 lua_error(L);
 }
 sum += lua_tonumber(L, i);
 }
 lua_pushnumber(L, sum/n); /* első eredmény */
 lua_pushnumber(L, sum); /* második eredmény */
 return 2; /* eredmények száma */
 }

lua_checkstack

int lua_checkstack (lua_State *L, int extra);

Megbizonyosodik arról, hogy van legalább extra szabad veremhely a veremben.
false értékkel tér vissza, ha nem tudta megnövelni a verem méretét a szükségesre.
Ez a függvény soha nem kicsinyíti a verem méretét; ha a verem mérete nagyobb,
mint az új méret, úgy hagyja.

lua_close

void lua_close (lua_State *L);

A megadott Lua állapot összes objektumát megsemmisíti (a megfelelő szemétgyűjtő
metaeljárás meghívásával, ha van) és az állapot által használt összes dinamikus
memóriát felszabadítja. Néhány platformon nem szükséges meghívni ezt a
függvényt, mivel minden erőforrás fel lesz szabadítva, mikor a host program futása
véget ér. Viszont a hosszú futású programok esetén, mint például egy webszerver,
amint nincs rá szükség, azonnal fel kell szabadítani ezeket, hogy ne nőhessenek túl
nagyra.

lua_concat

void lua_concat (lua_State *L, int n);

Összefűzi a verem tetején lévő n értéket, kiveszi őket, majd az eredményt a verem
tetején helyezi el. Ha n értéke 1, az eredmény a veremben lévő egyetlen karakterlánc
(tehát nem tesz semmit); ha n 0, az eredmény egy üres karakterlánc. Az összefűzés
a Lua szabályait követi (lásd §2.5.4).

lua_cpcall

int lua_cpcall (lua_State *L, lua_CFunction func, void *ud);

A func C függvényt védett módban futtatja. A func vermében csak egyetlen elem
van, egy könnyű userdata típusú, melynek tartalma ud. Hiba esetén a lua_cpcall
ugyanazzal a hibakóddal tér vissza, mint a lua_pcall, plusz a hibaobjektummal a
verem tetején, egyébként a visszatérési értéke zéró, és nem változtatja meg a verem
tartalmát. A func minden visszatérési értéke figyelmen kívül lesz hagyva.

lua_createtable

void lua_createtable (lua_State *L, int narr, int nrec);

Egy üres tömböt készít, majd a verem tetejére helyezi. Az új tömbnek narr számú
előre lefoglalt helye van tömb elemek és nrec helye nem-tömb elemek számára. Az
elő-lefoglalás akkor lehet hasznos, ha pontosan tudható, mennyi eleme lesz a
tömbnek. Egyéb esetben a lua_newtable függvény használandó.

lua_dump

int lua_dump (lua_State *L, lua_Writer writer, void *data);

A megadott függvényt bináris csonkká alakítja át. Egy Lua függvényt kap a verem
tetején, és ennek a bináris reprezentációját készíti el, ha ez újra be lesz töltve,
ugyanazt a függvényt adja vissza, mint ami az átalakítás előtt volt. A csonk részeinek

létrehozása közben a lua_dump meghívja a writer függvényt is (lásd lua_Writer) az
adott data paraméterrel, írásra.

A visszatérési érték egy hibakód, amely az író által visszaadott utolsó érték; 0 esetén
nem történt hiba.

Ez a függvény nem emeli ki a Lua függvényt a veremből.

lua_equal

int lua_equal (lua_State *L, int index1, int index2);

Visszatérési értéke 1, ha az index1 és index2 elfogadható indexeknél található
értékek megegyeznek, a Lua == operátorának szemantikáját követve (így meghívhat
metaeljárásokat is). Egyéb esetben a visszatérési értéke 0. Szintén 0 a visszatérési
értéke, ha valamelyik index nem érvényes.

lua_error

int lua_error (lua_State *L);

Egy Lua hibát generál. A hibaüzenetnek (amely bármilyen Lua típus érték lehet) a
verem tetején kell elhelyezkednie. A függvény hosszú ugrást hajt végre, így soha
nem rendelkezik visszatérési értékkel. (lásd luaL_error).

lua_gc

int lua_gc (lua_State *L, int what, int data);

A szemétgyűjtőt szabályozza.

Ez a függvény többféle folyamatot is végrehajthat, a what paraméter értékétől
függően:

• LUA_GCSTOP: megállítja a szemétgyűjtőt.
• LUA_GCRESTART: újraindítja a szemétgyűjtőt.
• LUA_GCCOLLECT: elindít egy teljes szemétgyűjtő kört.
• LUA_GCCOUNT: a Lua által használt memória pillanatnyi értékét adja

vissza (Kbyte-okban).
• LUA_GCCOUNTB: visszatérési értéke a Lua által felhasznált memória értéke

(byte-okban) és 1024 osztásából származó maradék.
• LUA_GCSTEP: végrehajt egy növekményes szemétgyűjtő-lépést. A lépés

"méretét" a data határozza meg (nagyobb érték mellett több lépés)
meghatározatlan módon. Ha a lépés méretét szabályozni akarod, a data

értékével kell kísérletezni. Visszatérési értéke 1, ha a lépéssel befejeződött
egy szemétgyűjtő-kör.

• LUA_GCSETPAUSE: A gyűjtő szünetét állítja be data/100 értékre (lásd §2.10).
Visszatérési értéke a szünet előző értéke.

• LUA_GCSETSTEPMUL: A gyűjtő lépésszorzóját állítja be arg/100 értékre (lásd
§2.10). Visszatérési értéke a lépésszorzó előző értéke.

lua_getallocf

lua_Alloc lua_getallocf (lua_State *L, void **ud);

Visszatérési értéke a megadott állapot memória-lefoglaló függvénye. Ha az ud
nem NULL, a Lua a lua_newstate számára átadott nem átlátszó mutatót az *ud -ben
tárolja.

lua_getfenv

void lua_getfenv (lua_State *L, int index);

A verembe helyezi a megadott indexhez tartozó érték környezeti tömbjét.

lua_getfield

void lua_getfield (lua_State *L, int index, const char *k);

A verembe helyezi a t[k] értékét, ahol t az érvényes index index értéke. Mint a Lua
nyelvben, ez a függvény is kiválthatja az "index" metaeljárást (lásd §2.8).

lua_getglobal

void lua_getglobal (lua_State *L, const char *name);

A verembe helyezi a globális name változó értékét. Ez makróként definiált:

 #define lua_getglobal(L,s) lua_getfield(L, LUA_GLOBALSINDEX, s)

lua_getmetatable

int lua_getmetatable (lua_State *L, int index);

A verembe helyezi a megadott elfogadható indexen található érték metatömbjét. Ha
az index nem érvényes, vagy az értéknek nincs metatömbje, akkor a visszatérési
érték 0, és semmi nem kerül a verembe.

lua_gettable

void lua_gettable (lua_State *L, int index);

A verembe helyezi a t[k] értékét, ahol t az érvényes index index értéke és k az
értéke a verem tetején.

Ez a függvény kiemeli a veremből az adott kulcsot (és az eredményét rakja be a
helyére). Mint a Lua nyelvben, ez a függvény is kiválthatja az "index" metaeljárást
(lásd §2.8).

lua_gettop

int lua_gettop (lua_State *L);

Visszatérési értéke a verem legfelső elemének indexe. Mivel az indexek 1-től
indulnak, ez a szám megegyezik a veremben lévő elemek számával (és így a 0 azt
jelenti, hogy a verem üres).

lua_insert

void lua_insert (lua_State *L, int index);

A legfelső elemet a megadott érvényes indexre mozgatja, és a fentebbi elemeket
felfelé, szabad helyre csúsztatja. Nem hívható pszeudo-indexszel, mivel egy
pszeudo-index nem az aktuális verempozíciót adja vissza.

lua_Integer

typedef ptrdiff_t lua_Integer;

Ezt a típust a Lua API használja egész típusú értékek létrehozásához.

Alapértelmezés szerint ez egy ptrdiff_t, amely rendszerint a legnagyobb integrált
típus, amelyet a gép "kényelmesen" kezelni tud.

lua_isboolean

int lua_isboolean (lua_State *L, int index);

Visszatérési értéke 1, ha a megadott elfogadható indexen található érték típusa
boolean, egyéb esetben 0.

lua_iscfunction

int lua_iscfunction (lua_State *L, int index);

Visszatérési értéke 1, ha a megadott elfogadható indexen található érték egy C
függvény, egyéb esetben 0.

lua_isfunction

int lua_isfunction (lua_State *L, int index);

Visszatérési értéke 1, ha a megadott elfogadható indexen található érték függvény
(akár C, akár Lua), egyéb esetben 0.

lua_islightuserdata

int lua_islightuserdata (lua_State *L, int index);

Visszatérési értéke 1, ha a megadott elfogadható indexen található érték könnyű
userdata, egyéb esetben 0.

lua_isnil

int lua_isnil (lua_State *L, int index);

Visszatérési értéke 1, ha a megadott elfogadható indexen található érték nil, egyéb
esetben 0.

lua_isnumber

int lua_isnumber (lua_State *L, int index);

Visszatérési értéke 1, ha a megadott elfogadható indexen található érték szám, vagy
számmá alakítható karakterlánc, egyéb esetben 0.

lua_isstring

int lua_isstring (lua_State *L, int index);

Visszatérési értéke 1, ha a megadott elfogadható indexen található érték
karakterlánc vagy szám (amely mindig karakterlánccá alakítható), egyéb esetben 0.

lua_istable

int lua_istable (lua_State *L, int index);

Visszatérési értéke 1, ha a megadott elfogadható indexen található érték tömb,
egyéb esetben 0.

lua_isthread

int lua_isthread (lua_State *L, int index);

Visszatérési értéke 1, ha a megadott elfogadható indexen található érték szál, egyéb
esetben 0.

lua_isuserdata

int lua_isuserdata (lua_State *L, int index);

Visszatérési értéke 1, ha a megadott elfogadható indexen található érték userdata
(akár teljes, akár könnyű), egyéb esetben 0.

lua_lessthan

int lua_lessthan (lua_State *L, int index1, int index2);

Visszatérési értéke 1, ha a megadott elfogadható index1 indexen található érték
kisebb, mint az index2 elfogadható indexen található érték, a Lua < operátor
szemantikájának megfelelően (így metaeljárások is meghívódhatnak). Egyéb
esetben a visszatérési érték 0. Szintén 0 a visszatérési érték, ha valamelyik index
nem érvényes.

lua_load

int lua_load (lua_State *L,
 lua_Reader reader,
 void *data,
 const char *chunkname);

Betölt egy Lua csonkot. Ha eközben nem történik hiba, a lua_load a Lua
függvényként lefordított csonkot helyezi a verem tetejére. Egyéb esetben egy
hibaüzenetet helyez oda. A lua_load visszatérési értékei:

• 0: nincs hiba;
• LUA_ERRSYNTAX: szintaktikai hiba az előfordítás közben;
• LUA_ERRMEM: memória lefoglalási hiba.

A függvény csak betölti a csonkot, de nem futtatja le azt.

A lua_load automatikusan érzékeli, hogy a csonk szöveges vagy bináris, és ennek
megfelelően tölti be azt (lásd a luac programot).

A lua_load egy felhasználó által betöltött reader függvényt használ a csonk
olvasására (lásd lua_Reader). A data argumentum az olvasó függvénynek átadott,
nem átlátszó érték.

A chunkname argumentum nevet ad a csonknak, amely a hibaüzenetekben, valamint
hibakereséskor van használatban (lásd §3.8).

lua_newstate

lua_State *lua_newstate (lua_Alloc f, void *ud);

Létrehoz egy új, független állapotot. Visszatérési értéke NULL, ha az állapot nem
létrehozható (memóriahiány miatt). Az f argumentum a lefoglaló függvény; a Lua a
teljes memórialefoglalást ezen a függvényen keresztül végzi. A második, ud, egy nem
átlátszó mutató, amelyet a Lua a lefoglaló függvénynek ad át minden híváskor.

lua_newtable

void lua_newtable (lua_State *L);

Egy új, üres tömböt hoz létre, és a verem tetejére helyezi azt. Megegyezik
a lua_createtable(L, 0, 0) hívással.

lua_newthread

lua_State *lua_newthread (lua_State *L);

Létrehoz egy új szálat, a verembe helyezi, és annak a lua_State értéknek a
mutatójával tér vissza, amelyik ezt a szálat adja vissza. Az ebből a függvényből
visszatért új állapot osztozik az eredeti állapot globális objektumaival (például
tömbjeivel), de rendelkezik egy független végrehajtási veremmel is.

Egy szál lezárására vagy megsemmisítésére nincs kifejezett függvény. A szálakat a
szemétgyűjtő algoritmus semmisíti meg, mint minden Lua objektumot.

lua_newuserdata

void *lua_newuserdata (lua_State *L, size_t size);

A függvény felszabadítja a megadott méretű memóriaterületet, és a verembe helyezi
az új teljes userdata elemet a blokk címével, és ezzel a címmel tér vissza.

A userdata C értékeket hoz létre a Lua-ban. Egy teljes userdata egy memóriablokkot
reprezentál. Ez egy objektum (mint egy tömb): létre kell hozni, lehet saját
metatömbje, és művelet hajtható végre, amikor megsemmisítésre kerül. Egy teljes
userdata csak önmagával egyenlő (raw egyenlőség esetén).

Amikor a Lua összegyűjt egy olyan teljes userdata elemet, amelynek van gc
metaeljárása, a Lua meghívja azt, majd a userdata elemet véglegesítettnek jelöli.
Amikor ez a userdata elem újra összegyűjtésre kerül, a Lua felszabadítja a megfelelő
memóriát.

lua_next

int lua_next (lua_State *L, int index);

Kiemel egy kulcsot a veremből, majd a megadott indexen található kulcs-érték párt
helyezi bele (a megadott kulcs utáni "következő" párt). Ha nincs több elem a
tömbben, a lua_next visszatérési értéke 0 (és nem helyez a verembe semmit).

Egy tipikus bejárás így néz ki:

 /* A tömb a veremben a 't' indexnél helyezkedik el */
 lua_pushnil(L); /* első kulcs */
 while (lua_next(L, t) != 0) {
 /* 'kulcs' a -2-es indexnél van, az 'érték' -1 indexnél */
 printf("%s - %s\n",
 lua_typename(L, lua_type(L, -2)), lua_typename(L, lua_type(L, -1)));
 lua_pop(L, 1); /* eltávolítja az 'értéket'; megtartja a 'kulcsot' a
következő iterációhoz */
 }

Egy tömb bejárása közben ne használjuk közvetlenül a lua_tolstring hívást egy
kulcson, hacsak nem biztos, hogy az aktuális kulcs karakterlánc. A lua_tolstring
újrahívása megváltoztatja a megadott indexen található értéket, ami összezavarja a
következő lua_next hívást.

lua_Number

typedef double lua_Number;

A Lua által használt számok típusa. Alapértelmezés szerint ez dupla (double), de
megváltoztatható a luaconf.h fájlban.

A konfigurációs fájl segítségével a Lua más szám-típusokkal is végezhet műveleteket
(pl. lebegőpontos (float) vagy hosszú (long)).

lua_objlen

size_t lua_objlen (lua_State *L, int index);

Visszatérési értéke a megadott elfogadható indexen található érték "hossza":
karakterlánc esetén annak hossza, tömbök esetén a hossz operátor eredménye ('#');
userdata típus esetén a számára lefoglalt memóriablokk mérete, egyéb értékek
esetén 0.

lua_pcall

lua_pcall (lua_State *L, int nargs, int nresults, int errfunc);

Védett módban hív meg egy függvényt.

Mind a nargs, mind a nresults jelentése ugyanaz, mint a lua_call esetén. Ha nem
történik hiba a hívás közben, lua_pcall pontosan ugyanúgy viselkedik, mint
a lua_call. Azonban ha hiba történik, a lua_pcall lekezeli azt, egyetlen értéket
helyez a verem tetejére (a hibaüzenetet), és a hibakóddal tér vissza. A lua_call-hoz
hasonlóan, a lua_pcall is mindig eltávolítja a veremből a függvényt, valamint annak
argumentumait.

Ha az errfunc értéke 0, akkor a veremben visszatérő hibaüzenet megegyezik az
eredeti hibaüzenettel. Egyéb esetben az errfunc egy hiba kezelő függvény
veremindexe. (A jelenlegi implementációban ez az index nem lehet pszeudo-index.)
Futtatási hiba esetén ez a függvény a hibaüzenettel lesz meghívva, és a visszatérési
értéke a lua_pcall által a verembe helyezett hibaüzenet lesz.

A hibakezelő függvény leginkább arra szolgál, hogy további hibakeresési
információkat adhassunk a hibaüzenethez, mint például a verem visszavezetés
(stack traceback). Ezek az információk a lua_pcall visszatérése után már nem
gyűjthetőek össze, mivel akkorra a verem már kiürül.

A lua_pcall függvény visszatérési értéke 0 siker esetén, egyéb esetben a következő
hibakódok szerepelhetnek (a lua.h fájlban vannak definiálva):

• LUA_ERRRUN: futtatási hiba (runtime error).

• LUA_ERRMEM: memória lefoglalási hiba. Ilyen hiba esetén a Lua nem hívja meg
a hibakezelő függvényt.

• LUA_ERRERR: Hiba a hibakezelő függvény futtatása közben.

lua_pop

void lua_pop (lua_State *L, int n);

Kiemel n elemet a veremből.

lua_pushboolean

void lua_pushboolean (lua_State *L, int b);

A verembe helyez egy boolean értéket b értékkel.

lua_pushcclosure

void lua_pushcclosure (lua_State *L, lua_CFunction fn, int n);

Egy új C zárványt helyez a verembe.

Amikor egy C függvény létrejön, társítható hozzá néhány érték, ami így egy C
zárványt hoz létre (lásd §3.4); ezután ezek az értékek bármikor elérhetőek lesznek,
amikor a függvény meg lesz hívva. Értékek C függvényhez társításához először
ezeket az értékeket a verembe kell helyezni (több érték esetén az első érték legyen
először elhelyezve). Ezután a lua_pushcclosure lesz meghívva, hogy hozza létre a C
függvényt és helyezze a verembe. Az n argumentum adja meg, hogy mennyi érték
van a függvényhez társítva. A lua_pushcclosure kiemeli az értékeket a veremből.

lua_pushcfunction

void lua_pushcfunction (lua_State *L, lua_CFunction f);

A verembe helyez egy C függvényt. A függvény egy C függvényre mutató mutatót
kap, és a verembe helyezi a function Lua típusát, így amikor meg lesz hívva, ehhez
a megfelelő C függvényt hívja segítségül.

Bármilyen, Lua-ban regisztrálandó függvénynek pontosan követnie kell a protokollt,
hogy megkaphassa a paramétereit, és visszatérhessen az eredményekkel (lásd
lua_CFunction).

A lua_pushcfunction(L, f) megegyezik a következővel: lua_pushcclosure(L, f,
0).

lua_pushfstring

const char *lua_pushfstring (lua_State *L, const char *fmt, ...);

A verembe helyez egy formázott karakterláncot, és a karakterláncra mutató
pointerrel tér vissza. Hasonlít a sprintf C függvényhez, de van néhány fontos
különbség:

• Nem kell helyet felszabadítani az eredménynek: a visszatérési érték egy Lua
karakterlánc, és a Lua gondoskodik a memória-lefoglalásról (és
felszabadításról, a szemétgyűjtésen keresztül).

• Az átalakítási vezérlők korlátozottabbak. Nincsenek jelzők (flagek),
szélességek (widths) és pontosságok. Az átalakítási vezérlők a következőek
lehetnek: '%%' (Egy '%' jelet helyez a karakterláncba), '%s' (egy zéró-végű
karakterláncot helyez el, méretbeli korlátozások nélkül), '%f' (egy lua_Number-t
helyez el), '%p' (egy mutatót helyez el hexadecimális számként), '%d' (egy int
egész számot helyez el), és '%c' (egy int egész számot helyez el
karakterként).

lua_pushinteger

void lua_pushinteger (lua_State *L, lua_Integer n);

Egy n értékű egész számot helyez a verembe.

lua_pushlightuserdata

void lua_pushlightuserdata (lua_State *L, void *p);

Egy könnyű userdata-t helyet a verembe.

A userdata C értékeket jelent Lua-ban. Egy könnyű userdata egy mutatót képvisel.
Ez egy érték (mint egy szám): nem kell létrehozni, nincs egyedi metatömbje és nem
lesz összegyűjtve (mivel soha nem is volt létrehozva). Egy könnyű userdata
megegyezik "bármelyik" könnyű userdata-val, amelynek ugyanaz a C címzése.

lua_pushlstring

void lua_pushlstring (lua_State *L, const char *s, size_t len);

A verembe helyezi az s által mutatott len méretű karakterláncot. A Lua egy belső
másolatot készít (vagy újra felhasznál) az adott karakterláncról, így az s
memóriaterülete közvetlenül a függvény visszatérése után felszabadítható vagy újra
felhasználható. A karakterlánc tartalmazhat beágyazott zérókat.

lua_pushnil

void lua_pushnil (lua_State *L);

Egy nil értéket helyez el a verem tetején.

lua_pushnumber

void lua_pushnumber (lua_State *L, lua_Number n);

Egy n értékű számot helyez a verembe.

lua_pushstring

void lua_pushstring (lua_State *L, const char *s);

A verembe helyezi az s által mutatott len méretű, zéró végű karakterláncot. A Lua
egy belső másolatot készít (vagy újra felhasznál) az adott karakterláncról, így az s
memóriaterülete közvetlenül a függvény visszatérése után felszabadítható vagy újra
felhasználható. A karakterlánc nem tartalmazhat beágyazott zérókat; az első ilyen a
karakterlánc végét fogja jelenteni.

lua_pushthread

int lua_pushthread (lua_State *L);

A verembe helyezi az L által képviselt szálat. Visszatérési értéke 1, ha ez a szál az
adott állapot főszála.

lua_pushvalue

void lua_pushvalue (lua_State *L, int index);

A verembe helyezi a megadott érvényes indexen található érték másolatát.

lua_pushvfstring

const char *lua_pushvfstring (lua_State *L,
 const char *fmt,
 va_list argp);

Megegyezik a lua_pushfstring hívással, kivéve, hogy ez egy va_list paramétert
kap az argumentumok száma helyett.

lua_rawequal

int lua_rawequal (lua_State *L, int index1, int index2);

Visszatérési értéke 1, ha az index1 és index2 elfogadható indexen található értékek
primitíven megegyeznek (azaz bármilyen metaeljárás meghívása nélkül). Egyéb
esetben a visszatérési értéke 0. Szintén 0-val tér vissza, ha a megadott indexek
valamelyike nem érvényes.

lua_rawget

void lua_rawget (lua_State *L, int index);

A lua_gettable híváshoz hasonlóan működik, de raw elérést hajt végre (tehát
metaeljárások nélkül).

lua_rawgeti

void lua_rawgeti (lua_State *L, int index, int n);

A verembe helyezi a t[n] értékét, ahol t az érvényes index index értéke. Az elérés
raw formátumú, így nem hajt végre metaeljárásokat.

lua_rawset

void lua_rawset (lua_State *L, int index);

A lua_settable híváshoz hasonlóan működik, de raw értékadást hajt végre (tehát
metaeljárások nélkül).

lua_rawseti

void lua_rawseti (lua_State *L, int index, int n);

Ugyanazt hajtja végre, mint a t[n] = v, ahol t az érvényes index index értéke, és v
a verem tetején lévő érték.

Ez a függvény kiemeli a verem tetején lévő értéket. Az értékadás raw formátumú, így
nem hajt végre metaeljárásokat.

lua_Reader

typedef const char * (*lua_Reader) (lua_State *L,
 void *data,
 size_t *size);

Az olvasó függvényt a lua_load használja. Minden alkalommal, amikor szüksége van
egy csonk újabb részére, a lua_load meghívja az olvasót, végigmenve a data
paraméteren. Az olvasónak a csonk új részletét tartalmazó memóriablokk
mutatójával kell visszatérnie, és a size értékét a blokk méretére kell állítania. A
blokknak addig kell léteznie, amíg az olvasó függvény újra meg lesz hívva. A csonk
végét az jelenti, ha az olvasó visszatérési értéke NULL. Az olvasó bármekkora méretű
darabbal visszatérhet, ami nagyobb, mint nulla.

lua_register

void lua_register (lua_State *L, const char *name, lua_CFunction f);

A megadott f C függvényt állítja be a globális name új értékeként. Ez egy makróként
van definiálva:

 #define lua_register(L,n,f) (lua_pushcfunction(L, f), lua_setglobal(L, n))

lua_remove

void lua_remove (lua_State *L, int index);

Eltávolítja a megadott érvényes indexen található értéket, majd az efölött lévő
indexeket lefelé csúsztatva betölti a hézagokat. Ne hívható meg pszeudo-indexszel,
mivel egy pszeudo-index nem az aktuális verempozíció.

lua_replace

void lua_replace (lua_State *L, int index);

A legfelső elemet a megadott pozícióra mozgatja (és kiemeli azt), a többi elem
csúsztatása nélkül (így áthelyezi a megadott pozícióban lévő értéket).

lua_resume

int lua_resume (lua_State *L, int narg);

Elindítja és folytatja a korutint a megadott szálban.

Egy korutin indításához először létre kell hozni egy új szálat (lásd lua_newthread);
majd a vermébe kell helyezni fő függvényét és annak argumentumait; ezután hívható
a lua_resume, ahol a narg az argumentumok számát adja meg. Ez a hívás akkor tér
vissza, ha a korutin szünetel, vagy befejezi a futását. Amikor visszatér, a verem
tartalmazza a lua_yield-nek átadott összes értéket, vagy az összes, főfüggvény által
visszatért értéket. A lua_resume visszatérési értéke LUA_YIELD, ha a korutin szünetel,
0, ha a korutin hiba nélkül befejezi futását, vagy hiba esetén egy hibakód (lásd
lua_pcall). Hiba esetén a verem nem ürül ki, így használható rajta a hibakereső API.
A hibaüzenet a verem tetején található. A korutin újraindításához annak vermébe kell
helyezni a yield visszatérési értékeit, majd utána meghívni a lua_resume-t.

lua_setallocf

void lua_setallocf (lua_State *L, lua_Alloc f, void *ud);

Megváltoztatja egy megadott állapot lefoglaló függvényét f-re, ud felhasználói
adattal.

lua_setfenv

int lua_setfenv (lua_State *L, int index);

Kiemel egy tömböt a veremből, és a megadott indexen található érték új
környezeteként állítja azt be. Ha a megadott indexen lévő érték nem függvény, vagy
nem userdata, a lua_setfenv visszatérési értéke 0. Egyéb esetben 1.

lua_setfield

void lua_setfield (lua_State *L, int index, const char *k);

Ugyanazt hajtja végre, mint a t[k] = v, ahol t az érvényes index index értéke, és v
a verem tetején lévő érték.

Ez a függvény kiemeli a verem tetején lévő értéket. Mint a Lua, ez a függvény is
végrehajthatja a "newindex" metaeljárást (lásd §2.8).

lua_setglobal

void lua_setglobal (lua_State *L, const char *name);

Kiemel egy értéket a veremből, és beállítja a globális name új értékeként. Ez egy
makróként van definiálva:

 #define lua_setglobal(L,s) lua_setfield(L, LUA_GLOBALSINDEX, s)

lua_setmetatable

int lua_setmetatable (lua_State *L, int index);

Kiemel egy tömböt a veremből, és a megadott elfogadható indexen található érték új
metatömbjeként állítja azt be.

lua_settable

void lua_settable (lua_State *L, int index);

Ugyanazt hajtja végre, mint a t[k] = v, ahol t az érvényes index index értéke, v a
verem tetején lévő érték és k a verem tetejétől számított második érték.

Ez a függvény mind a kulcsot, mind az értéket kiemeli a veremből. Mint a Lua, ez a
függvény is végrehajthatja a "newindex" metaeljárást (lásd §2.8).

lua_settop

void lua_settop (lua_State *L, int index);

Bármilyen elfogadható indexet elfogad, vagy 0-t, és a verem tetejét ehhez az
elemhez állítja be. Ha az új tetőpont magasabb, mint a régebbi, az újabb elemek nil
értéket vesznek fel. Ha az index értéke 0, akkor az összes elem el lesz távolítva a
veremből.
.

lua_State

typedef struct lua_State lua_State;

Egy olyan nem átlátszó struktúra, amely az egész Lua értelmező állapotát tárolja. A
Lua eljáráskönyvtár teljesen újrakezdhető: nincsen globális változója. Egy állapot
minden információja ebben a struktúrában található.

Az eljáráskönyvtár minden függvényének első paramétere egy olyan mutató, amely
erre az állapotra mutat, kivéve a lua_newstate esetén, amely a semmiből hozza létre
a Lua állapotot.

lua_status

int lua_status (lua_State *L);

Visszatérési értéke az L szál állapota.

Az állapot 0 normál szál esetén, hibakód, ha a szál hibával fejezte be a futását,
vagy LUA_YIELD, ha a szál szüneteltetve van.

lua_toboolean

int lua_toboolean (lua_State *L, int index);

A megadott elfogadható indexen található Lua értéket boolean (0 vagy 1) értékké
alakítja át. Mint minden teszt a Lua-ban, a lua_toboolean visszatérési értéke 1
bármely Lua érték esetén, amely különbözik false-tól és nil-től; egyébként 0-val tér
vissza. Szintén 0 a visszatérési érték, ha nem érvényes indexszel van meghívva. (Ha
aktuálisan csak boolean értékeket akarsz elfogadni, használd a lua_isboolean
hívást, hogy teszteld az érték típusát.)

lua_tocfunction

lua_CFunction lua_tocfunction (lua_State *L, int index);

A megadott elfogadható indexen található értéket C függvénnyé alakítja át. Az érték
csak C függvény lehet, egyéb esetben a visszatérési érték NULL.

lua_tointeger

lua_Integer lua_tointeger (lua_State *L, int idx);

A megadott elfogadható indexen található értéket előjeles integrált lua_Integer
típussá alakítja át. A Lua értéknek számnak, vagy számmá alakítható
karakterláncnak kell lennie (lásd §2.2.1); egyébként a lua_tointeger visszatérési
értéke 0.

Ha a szám nem egész típusú, akkor nem-meghatározott módon átalakításra kerül.

lua_tolstring

const char *lua_tolstring (lua_State *L, int index, size_t *len);

A megadott elfogadható indexen található Lua értéket karakterlánccá alakítja át
(const char*). Ha a len nem NULL, akkor a *len értékét a karakterlánc hosszának
megfelelő értékre állítja. A Lua értéknek számnak vagy karakterláncnak kell lennie,
egyébként a függvény visszatérési értéke NULL. Ha az érték szám, a lua_tolstring a
jelenlegi értékét karakterlánccá alakítja a veremben. (Ez a változtatás
összezavarhatja a lua_next-et, amikor a lua_tolstring egy kulcson van
végrehajtva, tömb-bejárás alatt.)

A lua_tolstring visszatérési értéke egy teljesen sorbarendezett mutató, amely a
Lua állapoton belül a karakterláncra mutat. Ez a karakterlánc mindig zéróval
végződik ('\0') az utolsó karakter után (mint a C-ben), de több beágyazott zérót is
tartalmazhat. Mivel a Lua szemétgyűjtéssel is rendelkezik, nincs garancia arra, hogy
a lua_tolstring hívásból visszatérő mutató érvényes, miután a megfelelő érték el
lesz távolítva a veremből.

lua_tonumber

lua_Number lua_tonumber (lua_State *L, int index);

A megadott elfogadható indexen található Lua értéket számmá alakítja át (lásd
lua_Number). A Lua értéknek számnak, vagy számmá alakítható karakterláncnak kell
lennie (lásd §2.2.1); egyéb esetben a lua_tonumber visszatérési értéke 0.

lua_topointer

const void *lua_topointer (lua_State *L, int index);

A megadott elfogadható indexen található értéket általános C mutatóvá (void*)
alakítja át. Az érték lehet userdata, tömb, szál vagy függvény, egyéb esetben
a lua_topointer visszatérési értéke NULL. Különböző objektumok különböző
mutatókat eredményeznek. Egy mutató eredeti értékére történő visszaalakítására
nincs lehetőség.

Ez a függvény általában hibakereső információk gyűjtésekor van használatban.

lua_tostring

const char *lua_tostring (lua_State *L, int index);

Megyegyezik a lua_tolstring függvénnyel, de a len értéke NULL.

lua_tothread

lua_State *lua_tothread (lua_State *L, int index);

A megadott elfogadható indexen található értéket Lua szállá alakítja át (amit a
lua_State* képvisel). Az értéknek szálnak kell lennie, egyébként a függvény
visszatérési értéke NULL.

lua_touserdata

void *lua_touserdata (lua_State *L, int index);

Ha a megadott elfogadható indexen található érték teljes userdata, visszatérési
értéke a blokk címe. Ha az érték könnyű userdata, visszatérési értéke a mutatója.
Egyéb esetben a visszatérési érték NULL.

lua_type

int lua_type (lua_State *L, int index);

Visszatérési értéke a megadott elfogadható indexen található érték típusa,
vagy LUA_TNONE érvénytelen index esetén (tehát olyan index, ami "üres"
verempozícióra mutat). A lua_type által visszatérő típuskódok a lua.h fájlban vannak
definiálva: LUA_TNIL, LUA_TNUMBER, LUA_TBOOLEAN, LUA_TSTRING, LUA_TTABLE,
LUA_TFUNCTION, LUA_TUSERDATA, LUA_TTHREAD, és LUA_TLIGHTUSERDATA.

lua_typename

const char *lua_typename (lua_State *L, int tp);

Visszatérési értéke a típus neve, amelyet a tp értéke határoz meg, ami mindig
a lua_type függvény egyik visszatérési értéke.

lua_Writer

typedef int (*lua_Writer) (lua_State *L,
 const void* p,
 size_t sz,
 void* ud);

Az író függvényt a lua_dump használja. Minden alkalommal, amikor egy csonk újabb
darabját elkészíti, a lua_dump meghívja az írót, végigmenve az írandó (p) bufferen, az
(sz) méretén, és a data lua_dump által átadott paraméteren.

Az író hibakóddal tér vissza: 0 esetén nem történt hiba; bármilyen más érték hibát
jelent, és megállítja a lua_dump függvényt, hogy ne hívja újra az írót.

lua_xmove

void lua_xmove (lua_State *from, lua_State *to, int n);

Értékeket cserél ki azonos globális állapoton belül lévő különböző szálak között.

A függvény kiemel n értéket a veremből from pozíciótól kezdve, és a to verembe
helyezi őket.

lua_yield

int lua_yield (lua_State *L, int nresults);

Szüneteltet egy korutint.

Ez a függvény csak egy C függvény visszatérési értékeként hívható meg, a
következők szerint:

 return lua_yield (L, nresults);

Amikor a C függvény ezen a módon hívja meg a lua_yield-et, a futó korutin
szünetelteti a futását, valamint az a függvény, amelyik kiadta a lua_resume hívást,
visszatér. A nresults paraméter a lua_resume függvénynek átadott paraméterek
száma a veremben.

3.8 - A Debug Interfész

A Lua nyelvben nincs beépített hibakeresési szolgáltatás. Ezzel szemben egy
speciális felületet biztosít függvények és hurkok segítségével. Ez a felület biztosítja,
hogy debuggerek, profilozók és egyéb olyan eszközök is létrehozhatóak legyenek,
amelyek belső információkat adnak a feldolgozóról.

lua_Debug

typedef struct lua_Debug {
 int event;
 const char *name; /* (n) */
 const char *namewhat; /* (n) */
 const char *what; /* (S) */
 const char *source; /* (S) */
 int currentline; /* (l) */
 int nups; /* (u) number of upvalues */
 int linedefined; /* (S) */
 int lastlinedefined; /* (S) */
 char short_src[LUA_IDSIZE]; /* (S) */
 /* private part */
 other fields

} lua_Debug;

A struktúra az aktív függvény különböző információit tartalmazza. A lua_getstack
ennek a struktúrának csak a privát részeit tölti fel, későbbi használatra. A lua_Debug
többi mezőjének hasznos információkkal való feltöltésére a lua_getinfo használható.

A lua_Debug mezőinek jelentése:

• source: Ha a függvény karakterláncként lett definiálva, akkor a source értéke
az adott karakterlánc. Ha a függvény egy fájlban van definiálva, akkor
a source egy '@'jellel kezdődik, és a fájl nevével folytatódik.

• short_src: A source "nyomtatható" változata, hibaüzenetekben van
használatban.

• linedefined: A sor száma, ahol a függvény definíciója kezdődik.
• lastlinedefined: A sor száma, ahol a függvény definíciója befejeződik.
• what: Értéke a "Lua" karakterlánc, ha az adott függvény egy Lua

függvény, "C", ha C függvény, "main", ha egy csonk fő része, és "tail", ha
egy olyan függvény volt, ami véghívást hajtott végre. Utóbbi esetben, a Lua-
nak nincs további információja a függvényről.

• currentline: Az adott függvény végrehajtódó sora. Ha nincs információ a
sorról, a currentline értéke -1.

• name: Az adott függvény neve elfogadható formában. Mivel a Lua-ban a
függvények első-osztályú értékek, nincs állandó nevük: néhány függvény több
globális változó értéke is lehet, míg mások csak tömbmezőként tárolódhatnak.
A lua_getinfo függvény ellenőrzi, hogy a függvény hogyan lett meghívva,
hogy megfelelő nevet találjon neki. Ha nem talál ilyet, akkor a name értéke
NULL.

• namewhat: Megmagyarázza a name mezőt. A namewhat értéke lehet "global",
"local", "method", "field", "upvalue", vagy "" (üres karakterlánc), attól
függően, hogy a függvény hogyan lett meghívva. (a Lua üres karakterláncot
használ, amikor más opció nem tűnik elfogadhatónak.)

• nups: A függény upvalue értékeinek száma.

lua_gethook

lua_Hook lua_gethook (lua_State *L);

Visszatérési értéke a jelenlegi hurok függvény.

lua_gethookcount

int lua_gethookcount (lua_State *L);

Visszatérési értéke a jelenlegi hurkok száma.

lua_gethookmask

int lua_gethookmask (lua_State *L);

Visszatérési értéke a jelenlegi hurok maszk.

lua_getinfo

int lua_getinfo (lua_State *L, const char *what, lua_Debug *ar);

Informácókkal tér vissza a megadott függvényről vagy függvényhívásról.

Hogy információt kapjunk egy függvényhívásról, az ar paraméternek valós aktivizáló
rekordnak kell lennie, amelyet előzőleg a lua_getstack töltött fel, vagy a hurok
argumentumaként lett átadva (lásd lua_Hook).

Hogy információt nyerhessünk egy függvényről, először a verembe kell helyezni, és
a what karakterláncnak a '>' karakterrel kell kezdődnie. (Ebben az esetben, a
lua_getinfo kiemeli a függvény a veremből.) Például, hogy megtudhassuk, az f
függvény melyik sorban lett definiálva, a következő kód használható:

 lua_Debug ar;
 lua_getfield(L, LUA_GLOBALSINDEX, "f"); /* globális 'f' lekérése */
 lua_getinfo(L, ">S", &ar);
 printf("%d\n", ar.linedefined);

A what karakterláncban minden egyes karakter az ar struktúra egy bizonyos mezőjét
tölti ki, vagy egy érték, amely a verembe lesz helyezve:

• 'n': Kitölti a name és namewhat mezőket;
• 'S': Kitölti a source, linedefined, lastlinedefined, what, és short_src

mezőket;
• 'l': Kitölti a currentline mezőt;
• 'u': Kitölti a nups mezőt;
• 'f': A verembe helyezi a megadott szinten futó függvényt;
• 'L': A verembe helyezi azt a tömböt, amelynek indexei a függvény érvényes

sorainak száma. (Egy érvényes sor olyan sort jelent, amelyhez kód társul, így
olyan sor, ahol töréspont helyezhető el. A nem érvényes sorokhoz tartoznak
az üres sorok és a megjegyzések.)

A függvény visszatérési értéke 0 hiba esetén (például ha a what értéke érvénytelen).

lua_getlocal

const char *lua_getlocal (lua_State *L, const lua_Debug *ar, int n);

Információt ad a megadott aktivizáló rekordon található lokális változóról. Az ar
paraméternek valós aktivizáló rekordnak kell lennie, amelyet előzőleg a lua_getstack
töltött fel, vagy a hurok argumentumaként lett átadva (lásd lua_Hook). Az n index
választja ki a megvizsgálandó lokális változót (1 az első paraméter vagy aktív lokális
változó, és így tovább, egészen az utolsó aktív lokális változóig.) A lua_getlocal a
változók értékét a verembe helyezi, és a nevükkel tér vissza.

Az olyan változónevek, amelyek '(' jellel (nyitó zárójellel) kezdődnek, belső változókat
képviselnek (ciklusvezérlő változók, ideiglenes változók és C függvények lokális
változói).

Visszatérési értéke NULL (és nem helyez a verembe semmit), ha az index nagyobb,
mint az aktív lokális változók száma.

lua_getstack

int lua_getstack (lua_State *L, int level, lua_Debug *ar);

Információt ad a feldolgozó futási verméről.

Ez a függvény részlegesen feltölti a lua_Debug struktúrát a megadott szinten futó
függvény aktivációs rekordjának azonosítójával. A 0. szint a jelenlegi függvény, az
n+1. szint pedig a jelenlegi függvény által hívott n. szint. Ha nem történik hiba, a
lua_getstack visszatérési értéke 1; ha magasabb szinttel lesz meghívva, mint az
aktuális veremméret, akkor a visszatérési érték 0.

lua_getupvalue

const char *lua_getupvalue (lua_State *L, int funcindex, int n);

Lekéri egy zárvány felsőértékeit. (Lua függvények esetén a felsőértékek olyan külső
lokális változók, amelyeket a függvény használ, és így következésképpen a zárványa
is tartalmazza). A lua_getupvalue az n. szintű felsőértéket kéri le, majd ennek értékét
a verembe helyezi, és a nevével tér vissza. funcindex a zárvány verembeli helyére
mutat. (A felső értékeknek nincs egyéni rendezettségük, mivel az egész függvényen
keresztül aktívak. Emiatt tetszőleges sorrendben lesznek számozva.)

Visszatérési értéke NULL (és nem helyez a verembe semmit) ha az index nagyobb,
mint a felsőértékek száma. C függvények esetén ez a függvény az üres
karakterláncot ("") használja a felsőértékek neveiként.

lua_Hook

typedef void (*lua_Hook) (lua_State *L, lua_Debug *ar);

A hibakeresési hurokfüggvények típusa.

Amikor egy hurok meg lesz hívva, az ar argumentumnak van egy event mezője,
amely azt a megadott eseményt jelöli, amely elindította a hurkot. A Lua a következő
konstansokkal azonosítja ezeket az eseményeket: LUA_HOOKCALL, LUA_HOOKRET,
LUA_HOOKTAILRET, LUA_HOOKLINE, és LUA_HOOKCOUNT. Ezen felül a sor eseményeknél
a currentline mező is be lesz állítva. Az ar egyéb mezőinek lekéréséhez a
huroknak meg kell hívnia a lua_getinfo függvényt. A visszatérési események esetén
az event lehet LUA_HOOKRET, az alapértelmezett érték, vagy LUA_HOOKTAILRET. A
második esetben a Lua egy visszatérést szimulál a függvényből, ami véghívást
hajtott végre; ebben az esetben nem szükséges a lua_getinfo hívása.

Amíg a Lua futtatja a hurkot, letiltja a hurok egyéb hívását. Tehát ha egy hurok
meghívja a Lua-t, hogy hajtson végre egy függvényt vagy csonkot, a futtatás hurkok
meghívása nélkül fog lezajlani.

lua_sethook

int lua_sethook (lua_State *L, lua_Hook func, int mask, int count);

Beállítja a hibakeresési hurokfüggvényt.

A func a hurokfüggvény. A mask értéke adja meg, hogy milyen eseményeknél legyen
meghívva a hurok: a kialakítása a konstansok bitenkénti 'or'-al lett létrehozva
LUA_MASKCALL, LUA_MASKRET, LUA_MASKLINE, és LUA_MASKCOUNT. A count argumentum
csak akkor van használatban, ha a maszk tartalmazza a LUA_MASKCOUNT konstanst.
Egyes események esetén a hurok az alábbiak szerint lesz meghívva:

• A hívó hurok: Akkor lesz meghívva, amikor a feldolgozó meghív egy
függvényt. A hurok akkor lesz meghívva, amikor a Lua belép az új
függvénybe, de mielőtt a függvény megkapná az argumentumait.

• A visszatérési hurok: Akkor lesz meghívva, amikor a feldolgozó visszatér
egy függvényből. A hurok akkor lesz meghívva, mielőtt a lua elhagyná a
függvényt. A függvény visszatérési értékei nem elérhetőek innen.

• A sor hurok: Akkor lesz meghívva, amikor a feldolgozó egy újabb sor
végrehajtását megkezdi, vagy visszafelé ugrik a kódban (még ha azonos
sorhoz is). (Ez az esemény csak akkor történhet meg, amikor a Lua egy Lua
függvényt hajt végre.)

• A számláló hurok: Akkor lesz meghívva, amikor a feldolgozó végrehajt
minden count utasítást. (Ez az esemény csak akkor történhet meg, amikor a
Lua egy Lua függvényt hajt végre.)

A hurok a mask zéró értékével kapcsolható ki.

lua_setlocal

const char *lua_setlocal (lua_State *L, const lua_Debug *ar, int n);

A megadott aktivációs rekord lokális változóját a megadott értékkel látja el. Az ar és n
paraméterek ugyanazok, mint a lua_getlocal függvény esetén (lásd lua_getlocal).
A lua_setlocal a verem tetején lévő értéket adja a változónak, és a nevével tér
vissza. Az értéket kiemeli a veremből.

Visszatérési értéke NULL (és nem emel ki semmit a veremből) ha az index nagyobb,
mint az aktív lokális változók száma.

lua_setupvalue

const char *lua_setupvalue (lua_State *L, int funcindex, int n);

A megadott zárvány felsőértékének értékét állítja be. A funcindex és n paraméterek
ugyanazok, mint a lua_getupvalue függvény esetén (lásd lua_getupvalue). A verem
tetején lévő értéket adja a felsőértéknek, és a nevével tér vissza. Az értéket kiemeli a
veremből.

Visszatérési értéke NULL (és nem emel ki semmit a veremből) ha az index nagyobb,
mint a felsőértékek száma.

4 - A segédkönyvtár

A segédkönyvtár több kényelmi függvényt is biztosít a C és a Lua között. Míg az alap
API primitív függvények segítségével biztosítja a párbeszédet a C és a Lua között,
addig a segédkönyvtár magasabb szintű függvényeket biztosít néhány általános
feladat ellátásához.

A segédkönyvtár összes függvénye a lauxlib.h fejlécfájlban van definiálva, és
a luaL_ prefixszel rendelkezik.

A segédkönyvtár minden függvénye az alap API alapján épül fel, így semmi olyat
nem tartalmaz, amit nem lehetne megoldani ezen API használatával.

A segédkönyvtár több függvénye is ellenőrzi a C függvények argumentumait.
Ezeknek a neve mindig luaL_check* vagy luaL_opt* kifejezéssel kezdődik. Ezek
mindig hibát érnek el, ha az ellenőrzés sikertelen. Mivel a hibaüzenetek az
argumentumoknak megfelelően vannak formázva (pl., "bad argument #1"), ezek a
függvények nem használhatóak más verem értékek esetén.

4.1 - Függvények és típusok

A következőkben szerepelnek a segédkönyvtár függvényei és típusai, ABC
sorrendben.

luaL_addchar

void luaL_addchar (luaL_Buffer *B, char c);

A c karaktert a B bufferhez adja (lásd luaL_Buffer).

luaL_addlstring

void luaL_addlstring (luaL_Buffer *B, const char *s, size_t l);

Az s által mutatott, l hosszúságú karakterláncot a B bufferhez adja (lásd
luaL_Buffer). A karakterlánc tartalmazhat beágyazott zérókat.

luaL_addsize

void luaL_addsize (luaL_Buffer *B, size_t n);

Egy előzőleg a buffer területre másolt (lásd luaL_prepbuffer) n hosszúságú
karakterláncot a B bufferhez adja (lásd luaL_Buffer).

luaL_addstring

void luaL_addstring (luaL_Buffer *B, const char *s);

Az s által mutatott zéróvégű karakterláncot a B buffehez adja (lásd luaL_Buffer). A
karakterlánc nem tartalmazhat beágyazott zérókat.

luaL_addvalue

void luaL_addvalue (luaL_Buffer *B);

A verem tetején lévő értéket a B bufferhez adja (lásd luaL_Buffer). Az értéket kiemeli
a veremből.

Ez az egyetlen olyan karakterlánc-buffer művelet, amely hívásakor extra elemet vár a
veremben, méghozzá a bufferhez adandó értéket.

luaL_argcheck

void luaL_argcheck (lua_State *L,
 int cond,
 int numarg,

 const char *extramsg);

Ellenőrzi, hogy a megadott cond feltétel igaz -e. Ha nem, egy hibát ér el a következő
hibaüzenettel, ahol func a hívó veremből származik:

 bad argument #<numarg> to <func> (<extramsg>)

luaL_argerror

int luaL_argerror (lua_State *L, int numarg, const char *extramsg);

Egy hibát ér el a következő üzenettel, ahol func a hívó veremből származik:

 bad argument #<numarg> to <func> (<extramsg>)

A függvény soha nem tér vissza, mivel ez egy olyan kifejezés, amely C
függvényekben a következőként használható: return luaL_argerror(args).

luaL_Buffer

typedef struct luaL_Buffer luaL_Buffer;

A karakterlánc buffer típusa.

Egy karakterlánc buffer lehetővé teszi a C nyelvben Lua karakterláncok létrehozását.
Használatára a következők vonatkoznak:

• Először deklarálni kell luaL_Buffer típusú b változót.
• Ezután elő kell készíteni azt a luaL_buffinit(L, &b) hívással.
• Ezután a karakterlánc darabjait hozzá kell adni a bufferhez valamelyik

luaL_add* függvénnyel.
• Végül meg kell hívni a luaL_pushresult(&b) függvényt. Ez a hívás a verem

tetején hagyja a kész karakterláncot.

A normál műveletek közben a karakterlánc buffer változó számú verem helyet
használ. Így, amíg egy buffer használatban van, nem lehet tudni, pontosan hol van a
verem teteje. A verem a sikeres bufferművelet-hívások között használható, feltéve,
ha azok kiegyensúlyozottak; azaz egy bufferművelet hívásakor a verem azonos
szinten van, mint az előző bufferművelet előtt. (az egyetlen kivétel ez alól a szabály
alól a luaL_addvalue). A luaL_pushresult hívása után a verem visszatér az
előkészítés előtti szintre, plusz a verem tetején lesz a kész karakterlánc.

luaL_buffinit

void luaL_buffinit (lua_State *L, luaL_Buffer *B);

Előkészíti a B buffert. A függvény nem foglal le helyet; a buffert változóként kell
deklarálni (lásd luaL_Buffer).

luaL_callmeta

int luaL_callmeta (lua_State *L, int obj, const char *e);

Meghív egy metaeljárást.

Ha az obj indexnél lévő objektumnak van metatömbje, és ennek van e mezője, ez a
függvény meghívja ezt a mezőt és az objektumot adja egyetlen argumentumául.
Ebben az esetben a függvény visszatérési értéke 1 és a verembe helyezi a hívásból
visszatérő értéket. Ha nincs metatömbje, vagy nincs ilyen metaeljárása, a függvény
visszatérési értéke 0 (és semmit nem helyez el a veremben).

luaL_checkany

void luaL_checkany (lua_State *L, int narg);

Ellenőrzi, hogy a függvénynek van -e valamelyik típusú argumentuma (beleértve a
nil-t is) narg pozícióban.

luaL_checkint

int luaL_checkint (lua_State *L, int narg);

Ellenőrzi, hogy a narg pozícióban lévő argumentum szám -e, és visszatérési értéke
ez a szám int formában.

luaL_checkinteger

lua_Integer luaL_checkinteger (lua_State *L, int narg);

Ellenőrzi, hogy a narg pozícióban lévő argumentum szám -e, és visszatérési értéke
ez a szám lua_Integer formában.

luaL_checklong

long luaL_checklong (lua_State *L, int narg);

Ellenőrzi, hogy a narg pozícióban lévő argumentum szám -e, és visszatérési értéke
ez a szám long formában.

luaL_checklstring

const char *luaL_checklstring (lua_State *L, int narg, size_t *l);

Ellenőrzi, hogy a narg pozícióban lévő argumentum karakterlánc -e, és ezzel tér
vissza; ha l nem NULL, *l értéke a karakterlánc hossza lesz.

luaL_checknumber

lua_Number luaL_checknumber (lua_State *L, int narg);

Ellenőrzi, hogy a narg pozícióban lévő argumentum szám -e, és ezzel tér vissza.

luaL_checkoption

int luaL_checkoption (lua_State *L,
 int narg,
 const char *def,
 const char *const lst[]);

Ellenőrzi, hogy a narg argumentum karakterlánc -e, és megkeresi ezt a lst tömbben
(amelynek NULL-végződésűnek kell lennie). Visszatérési értéke az az index, ahol a
karakterlánc található a tömbben. Egy hibát ér el, ha az argumentum nem
karakterlánc, vagy a karakterlánc nem található.

Ha a def nem NULL, a függvény a def értékét használja alapértelmezett értékként, ha
nincs narg argumentum, vagy annak értéke nil.

Ez főleg akkor hasznos, ha karakterláncokat akarunk megfeleltetni C felsorolásnak
(enum). (a Lua függvénykönyvtárakban megállapodás, hogy karakterláncokat kell
használni számok helyett a lehetőségek kiválasztásakor.)

luaL_checkstack

void luaL_checkstack (lua_State *L, int sz, const char *msg);

A verem méretét top + sz eleműre bővíti, hibát ér el, ha a verem nem növelhető
akkorára. Az msg egy kiegészítő üzenet, amely a hibaüzenetben fog szerepelni.

luaL_checkstring

const char *luaL_checkstring (lua_State *L, int narg);

Ellenőrzi, hogy a narg pozícióban lévő argumentum karakterlánc -e, és ezzel tér
vissza.

luaL_checktype

void luaL_checktype (lua_State *L, int narg, int t);

Ellenőrzi, hogy a narg pozícióban lévő argumentum t típusú -e.

luaL_checkudata

void *luaL_checkudata (lua_State *L, int narg, const char *tname);

Ellenőrzi, hogy a narg pozícióban lévő argumentum tname típusú userdata -e (lásd
luaL_newmetatable).

luaL_dofile

int luaL_dofile (lua_State *L, const char *filename);

Betölti és futtatja a megadott fájlt. Ez a következő makróként van definiálva:

 (luaL_loadfile(L, filename) || lua_pcall(L, 0, LUA_MULTRET, 0))

Visszatérési értéke 0, ha nem volt hiba, illetve 1 valamilyen hiba esetén.

luaL_dostring

int luaL_dostring (lua_State *L, const char *str);

Betölti és futtatja a megadott karakterláncot. Ez a következő makróként van
definiálva:

 (luaL_loadstring(L, str) || lua_pcall(L, 0, LUA_MULTRET, 0))

Visszatérési értéke 0, ha nem volt hiba, illetve 1 valamilyen hiba esetén.

luaL_error

int luaL_error (lua_State *L, const char *fmt, ...);

Elér egy hibát. A hibaüzenet formátumát a fmt és annak extra argumentumai
szablyák meg, a lua_pushfstring szabályainak megfelelően. A hibaüzenet elejére
kerül a fájlnév és a sor száma, ahol a hiba történt, ha ez az információ elérhető.

A függvény soha nem tér vissza, mivel ez egy olyan kifejezés, amely C
függvényekben a következőként használható: return luaL_error(args).

luaL_getmetafield

int luaL_getmetafield (lua_State *L, int obj, const char *e);

Az obj indexen lévő objektum metatömbjének e mezőjét helyezi a verembe. Ha az
objektumnak nincs metatömbje, vagy annak nincs ilyen mezője, visszatérési értéke
0, és nem helyez semmit a verembe.

luaL_getmetatable

void luaL_getmetatable (lua_State *L, const char *tname);

A verembe helyezi a registryben a tname névhez társított metatömböt (lásd
luaL_newmetatable).

luaL_gsub

const char *luaL_gsub (lua_State *L,
 const char *s,
 const char *p,
 const char *r);

Elkészíti az s karakterlánc másolatát, amelyben a p karakterlánc összes
előfordulását r karakterláncra cseréli. A verembe helyezi a kész karakterláncot, majd
azzal tér vissza.

luaL_loadbuffer

int luaL_loadbuffer (lua_State *L,
 const char *buff,
 size_t sz,
 const char *name);

A megadott buffert lua csonkként tölti be. A függvény a lua_load-ot használja a buff
által mutatott sz méretű buffer csonkba töltéséhez.

A függvény ugyanazokkal az eredményekkel tér vissza, mint a lua_load. A name a
csonk neve, amely hibakereső információknál ls hibaüzeneteknél van használatban.

luaL_loadfile

int luaL_loadfile (lua_State *L, const char *filename);

A megadott fájlt Lua csonkként tölti be. A függvény a lua_load-ot használja
a filename nevű fájl csonkba töltéséhez. Ha a filename értéke NULL, akkor az
alapértelmezett bemenetből tölt be. Az első sor nem lesz figyelembe véve, ha az #
jellel kezdődik.

A függvény ugyanazokkal az eredményekkel tér vissza, mint a lua_load, azonban
van egy extra hibakódja is, LUA_ERRFILE, ha fájl nem nyitható meg, vagy nem
olvasható.

A lua_load-hoz hasonlóan, ez a függvény csak betölti a csonkot, de nem futtatja azt.

luaL_loadstring

int luaL_loadstring (lua_State *L, const char *s);

A megadott karakterláncot Lua csonkként tölti be. A függvény a lua_load-ot
használja a zéró-végződésű s karakterlánc csonkba töltéséhez.

A függvény ugyanazokkal az eredményekkel tér vissza, mint a lua_load.

A lua_load-hoz hasonlóan, ez a függvény csak betölti a csonkot, de nem futtatja azt.

luaL_newmetatable

int luaL_newmetatable (lua_State *L, const char *tname);

Ha a registry már tartalmaz tname kulcsot, 0-val tér vissza. Egyéb esetben egy új
tömböt készít, amely a userdata metatömbje lesz, a registryhez adja tname kulccsal,
és 1-el tér vissza.

Mindkét esetben a verembe helyezi a registryben a tname kulcshoz rendelt értéket.

luaL_newstate

lua_State *luaL_newstate (void);

Egy új Lua állapotot készít, amelyhez a lua_newstate-t egy lefoglaló függvénnyel
hívja meg, amely a szabványos C realloc függvényen alapszik, valamint beállít egy
pánik függvényt (lásd lua_atpanic), amely az alapértelmezett hibakimeneten jeleníti
meg a hibaüzenetet fatális hiba esetén.

Visszatérési értéke az új állapot, vagy NULL, ha memória-lefoglalási hiba történt.

luaL_openlibs

void luaL_openlibs (lua_State *L);

Megnyitja az összes szabványos Lua eljáráskönyvtárat a megadott állapot számára.

luaL_optint

int luaL_optint (lua_State *L, int narg, int d);

Ha a narg pozícióban lévő argumentum szám, visszatérési értéke ez a szám int
formában. Ha ez az argumentum hiányzik, vagy nil, visszatérési értéke d. Egyéb
esetben hibát okoz.

luaL_optinteger

lua_Integer luaL_optinteger (lua_State *L, int narg, lua_Integer d);

Ha a narg pozícióban lévő argumentum szám, visszatérési értéke ez a
szám lua_Integer formában. Ha ez az argumentum hiányzik, vagy nil, visszatérési
értéke d. Egyéb esetben hibát okoz.

luaL_optlong

long luaL_optlong (lua_State *L, int narg, long d);

Ha a narg pozícióban lévő argumentum szám, visszatérési értéke ez a szám long
formában. Ha ez az argumentum hiányzik, vagy nil, visszatérési értéke d. Egyéb
esetben hibát okoz.

luaL_optlstring

const char *luaL_optlstring (lua_State *L,
 int narg,
 const char *d,

 size_t *l);

Ha a narg pozícióban lévő argumentum karakterlánc, azzal tér vissza. Ha ez az
argumentum hiányzik, vagy nil, visszatérési értéke d. Egyéb esetben hibát okoz.

Ha l értéke nem NULL, az *l pozíciót az eredmény hosszával megegyező értékre
állítja.

luaL_optnumber

lua_Number luaL_optnumber (lua_State *L, int narg, lua_Number d);

Ha a narg pozícióban lévő argumentum szám, visszatérési értéke ez a szám. Ha ez
az argumentum hiányzik, vagy nil, visszatérési értéke d. Egyéb esetben hibát okoz.

luaL_optstring

const char *luaL_optstring (lua_State *L, int narg, const char *d);

Ha a narg pozícióban lévő argumentum karakterlánc, azzal tér vissza. Ha az
argumentum hiányzik, vagy nil, visszatérési értéke d. Egyéb esetben hibát okoz.

luaL_prepbuffer

char *luaL_prepbuffer (luaL_Buffer *B);

Visszatérési értéke LUAL_BUFFERSIZE méret helyének címzése, ahová egy B bufferhez
adandó karakterlánc másolható (lásd luaL_Buffer). Miután a karakterlánc erre a
helyre lett másolva, meg kell hívni a luaL_addsize függvényt a karakterlánc
méretével, hogy ténylegesen is a bufferbe kerüljön.

luaL_pushresult

void luaL_pushresult (luaL_Buffer *B);

Befejezi a B buffer használatát, a kész karakterláncot a verem tetején hagyva.

luaL_ref

int luaL_ref (lua_State *L, int t);

Elkészít egy hivatkozást a t indexnél található tömbhöz, a verem tetején lévő
objektumhoz, és visszatér vele (kiemeli az objektumot a veremből).

A hivatkozás egy egyedi egész típusú kulcs. Amíg manuálisan nem kerülnek a t
tömbbe egész típusú kulcsok, a luaL_ref megbizonyosodik a kulcsok
egyedülállóságáról visszatérés előtt. Egy r által hivatkozott objektum lekérhető
a lua_rawgeti(L, t, r) hívással. A luaL_unref függvény felszabadítja a
hivatkozást, valamint a hozzá társított objektumot is.

Ha a verem tetején található objektum nil, a luaL_ref visszatérési értéke
a LUA_REFNIL konstans. A LUA_NOREF konstans garantátan eltérő bármilyen luaL_ref
által visszatérő hivatkozástól.

luaL_Reg

typedef struct luaL_Reg {
 const char *name;
 lua_CFunction func;
} luaL_Reg;

A luaL_register által regisztrálandó függvénytömbök típusa. A name a függvény
neve, a func pedig egy mutató a függvényhez. A luaL_Reg minden tömbjének egy
jelzős bejegyzéssel kell végződnie, ahol mind a name, mind a func értéke NULL.

luaL_register

void luaL_register (lua_State *L,
 const char *libname,
 const luaL_Reg *l);

Megnyit egy eljáráskönyvtárat.

Ha a libname értéke NULL, az összes függvényt regisztrálja az l listából (lásd
luaL_Reg) a verem tetején lévő tömbe.

Ha nem-null libname argumentummal lesz meghívva, egy új t tömböt készít, amelyet
a globális libname változó értékeként, valamint a package.loaded[libname]
értékeként állítja be, és regisztrálja az összes függvényét az l listában. Ha van ilyen
tömb a package.loaded[libname] címen, vagy a globális libname változóban, újra
felhasználja ezt a tömböt ahelyett, hogy egy újat készítene.

A függvény minden esetben a verem tetején hagyja a tömböt.

luaL_typename

const char *luaL_typename (lua_State *L, int idx);

A megadott idx indexen található érték típusának nevével tér vissza.

luaL_typerror

int luaL_typerror (lua_State *L, int narg, const char *tname);

A következőhöz hasonló hibaüzenetet állít elő:

 <location>: bad argument <narg> to <function> (<tname> expected, got
<realt>)

ahol <location> a luaL_where-ből származik, a <function> a jelenlegi függvény
neve, és a <realt> az aktuális argumentum típusának neve.

luaL_unref

void luaL_unref (lua_State *L, int t, int ref);

Törli a ref hivatkozást a t indexen található tömbből (lásd luaL_ref). A bejegyzés el
lesz távolítva a tömbből, így a hivatkozott objektum is összegyűjthető. A ref
hivatkozás szintén felszabadul, és újra felhasználható.

Ha a ref értéke LUA_NOREF vagy LUA_REFNIL, a luaL_unref nem csinál semmit.

luaL_where

void luaL_where (lua_State *L, int lvl);

A verembe helyez egy karakterláncot, amely azonosítja a vezérlés jelenlegi
pozícióját lvl szinten a hívó veremben. Jellemzően a karakterlánc formátuma a
következő: <chunkname>:<currentline>:. A 0. szint a futó függvény, 1., amelyik hívta
a futó függvényt, és így tovább.

Ez a függvény a hibaüzenetek előtagjának előállításakor van használatban.

5 - Szabványos függvénykönyvtárak

A Lua szabványos függvénykönyvtárai hasznos függvényeket biztosítanak, amelyek
közvetlenül a C API-n keresztül vannak megvalósítva. Ezek közül a függvények közül
néhány a nyelvben nélkülözhetetlen szolgáltatást biztosít (pl., type és getmetatable);
mások "külső" hozzáféréseket (pl., I/O); míg megint mások a Lua-ban magában

vannak megvalósítva, de ezek vagy különösen hasznosak, vagy olyan kritikus
teljesítményigényük van, hogy érdemes volt megvalósítani C-ben (pl., sort).

Az összes függvénykönyvtár a hivatalos C API-n keresztül, különböző C
modulokként lett megvalósítva. Jelenleg a következő szabványos
függvénykönyvtárak léteznek a Lua nyelvben:

• alap függvénykönyvtár;
• csomag függvénykönyvtár;
• karakterlánc műveletek;
• tömb műveletek;
• matematikai függvények (sin, log, stb.);
• bemenet és kimenet;
• operációs rendszer szolgáltatások;
• hibakereső szolgáltatások.

Az alap és a csomag függvénykönyvtárakat leszámítva minden egyes
függvénykönyvtár függvényei egy globális tömb mezőiként, vagy az objektumának
eljárásaiként érhetőek el.

Ezeknek a függvénykönyvtáraknak az eléréséhez a C kliensprogramnak meg kell
hívnia a luaL_openlibs függvényt, amely megnyitja az összes alapértelmezett
függvénykönyvtárat. Lehetőség van arra is, hogy ezeket egyenként nyissuk meg a
következő hívásokkal: luaopen_base (az alap függvénykönyvtárhoz),
luaopen_package (a csomag függvénykönyvtárhoz), luaopen_string (a karakterlánc
függvénykönyvtárhoz), luaopen_table (a tömb függvénykönyvtárhoz), luaopen_math
(a matematikai függvénykönyvtárhoz), luaopen_io (az I/O és operációs rendszer
függvénykönyvtárakhoz), és luaopen_debug (a hibakereső függvénykönyvtárhoz).
Ezek a függvények a lualib.h fájlban vannak deklarálva, és közvetlenül nem
hívhatóak meg: a többi Lua C függvényhez hasonlóan működnek, pl., a lua_call
használatával hívhatóak meg.

5.1 - Alap függvények

Az alap függvénykönyvtár néhány alapvető fontosságú függvényt biztosít a Lua
számára. Ha ez az eljáráskönyvtár nincs betöltve a programban, különösen óvatosan
kell eljárni, hogy szükséges -e annak valamilyen szolgáltatásait megvalósítani.

assert (v [, message])

Egy hibát okoz, amikor a v argumentum hamis (tehát nil vagy false); egyébként az
argumentumokkal tér vissza. A message egy hibaüzenet, ha nincs megadva, az
alapértelmezett üzenet lesz használva: "assertion failed!"

collectgarbage (opt [, arg])

A függvény egy általános felületet hoz létre a szemétgyűjtőhöz. Az első, opt
függvénytől függően különböző függvényeket hajthat végre:

• "stop": megállítja a szemétgyűjtőt.
• "restart": újraindtja a szemétgyűjtőt.
• "collect": elindít egy teljes szemétgyűjtő kört.
• "count": a Lua által használt memória pillanatnyi értékét adja vissza (Kbyte-

okban).
• "step": végrehajt egy növekményes szemétgyűjtő-lépést. A lépés méretét

az arg határozza meg (nagyobb érték mellett több lépés) meghatározatlan
módon. Ha a lépés méretét szabályozni akarod, az arg értékével kell
kísérletezni. Visszatérési értéke true, ha a lépéssel befejeződütt egy
szemétgyűjtő kör.

• "setpause": A gyűjtő szünetét állítja be arg/100 értékre (lásd §2.10).
• "setstepmul": A gyűjtő lépésszorzóját állítja be arg/100 értékre (lásd §2.10).

dofile (filename)

Megnyitja az adott fájlnevet, majd annak tartalmát Lua csonkként végrehajtja. Ha
argumentumok nélkül van meghívva, az alapértelmezett bemenet (stdin) tartalmát
hajtja végre. A csonk összes visszatérési értékével tér vissza. Hiba esetén a dofile
továbbítja a hibát a hívónak (tehát a dofile nem futtatható védett módban).

error (message [, level])

Leállítja az utoljára hívott védett függvényt, és a message argumentummal, mint
hibaüzenettel tér vissza. Az error függvény soha nem tér vissza.

Legtöbb esetben az error a hibaüzenet elejére fűz valamilyen információt a hiba
helyéről. A level argumentum adja meg, hogyan legyen lekérve a hiba helye. Az 1-
es érték (alapértelmezett érték) esetén a hiba helye az, ahonnan az error függvény
meg lett hívva. 2-es érték esetén az, ahonnan az error-t meghívó függvény meg lett
hívva, és így tovább. 0 érték esetén nem lesz kiegészítő információ adva a
hibaüzenethez.

_G

Egy olyan globális változó (nem függvény), amely a globális környezetet tartalmazza
(tehát, _G._G = _G). A Lua önmagában nem használja ezt a változót; az értékeinek
megváltoztatása nem befolyásolja a környezetet, és fordítva (A környezetek
megváltoztatására a setfenv használható.)

getfenv (f)

A megadott függvény által használt környezettel tér vissza. Az f lehet egy Lua
függvény, vagy egy szám, amely a függvény veremben lévő pozícióját adja meg: az
1-es szint az a függvény, amely meghívta a getfenv függvényt. Ha a megadott
függvény nem Lua függvény, vagy f értéke 0, a getfenv visszatérési értéke a
globális környezet. Az f alapértelmezett értéke 1.

getmetatable (object)

Ha a megadott object objektumnak nincs metatömbje, visszatérési értéke nil.
Egyébként, ha az objektum metatömbjének van "__metatable" mezője, akkor az
ahhoz társított értékkel tér vissza. Egyéb esetben a megadott objektum
metatömbjével tér vissza.

ipairs (t)

Három értékkel tér vissza: egy iterátor függvénnyel, a t tömbbel és 0-val, így a
következő szerkezet:

 for i,v in ipairs(t) do body end

a (1,t[1]), (2,t[2]), ˇˇˇ, párokon fog végigiterálni, az első nem létező egész típusú
kulcsig.

A bejárás közbeni értékváltoztatás veszélyeiről lásd a next függvény leírását.

load (func [, chunkname])

Betölt egy csonkot a func függvény segítségével, amely megadja annak darabjait.
Minden egyes func hívásnak olyan karakterlánccal kell visszatérnie, amely összefűzi
az előző eredményeket. nil (vagy hiányzó érték) visszatérése jelzi a csonk végét.

Ha nem történik hiba, visszatérési értéke a lefordított csonk függvényként; egyéb
esetben nil és a hibaüzenet. A visszatérő függvény környezete a globális környezet.

A chunkname argumentum nevet ad a csonknak, amely a hibaüzenetekben, valamint
hibakereséskor van használatban.

loadfile ([filename])

A load-hoz hasonlóan működik, de a csonkot a megadott filename fájlból, vagy
ennek hiányában az alapértelmezett bementről tölti be.

loadstring (string [, chunkname])

A load-hoz hasonlóan működik, de a csonkot a megadott karakterláncból tölti be.

A megadott kifejezés betöltésére és végrehajtására a következő kifejezés
használható:

 assert(loadstring(s))()

next (table [, index])

Egy tömb összes mezőjének bejárására használható. Az első argumentuma a tömb,
a második pedig a tömb egy indexe. A next visszatérési értéke a tömb következő
indexe, és a hozzá tartozó érték. Ha második argumentuma nil, a visszatérési érték
a kezdő index, és az ahhoz társított érték. Ha az utolsó indexszel van meghívva,
vagy nil-el egy üres tömbön, a visszatérési érték is nil. Ha a második argumentum
hiányzik, akkor az nil-nek lesz kiértékelve. A next(t) kifejezés arra is használható,
hogy meggyőződjünk arról, hogy egy tömb üres -e.

Az indexek számlálásának sorrendje nincs meghatározva, még szám-indexek esetén
sem. (Egy tömb sorrendben történő bejárására a numerikus for ciklus vagy
az ipairs függvény használható.)

A next viselkedése meghatározatlanná válik, ha a bejárás közben egy nem létező
mezőhöz érték adódik. A létező mezők azonban módosíthatóak, sőt törölhetőek is.

pairs (t)

Három visszatérési értéke van: a next függvény, a t tömb, és nil, így a következő
szerkezet:

 for k,v in pairs(t) do body end

a t tömb összes kulcs-érték párján végigiterál.

A bejárás közbeni értékváltoztatás veszélyeiről lásd a next függvény leírását.

pcall (f, arg1, ˇˇˇ)

Védett módban hívja meg az f függvényt a megadott argumentumokkal. Ez azt
jelenti, hogy a függvényen belüli hibák nem lesznek továbbítva; ehelyett a pcall

elkapja a hibát, és egy állapotkóddal tér vissza. Az első visszatérési érték egy
boolean típusú állapotkód, amely igaz, ha a hívás hiba nélkül fejeződik be. Ebben az
esetben a hívás visszatérési értékei is visszatérnek az első után. Hiba esetén a
visszatérési érték false, valamint a hibaüzenet.

print (ˇˇˇ)

Bármennyi argumentumot kaphat, és az értékeiket írja ki a stdout-ra. Az
argumentumokat a tostring függvény alakítja karakterlácokká. A print nem
formázott kimenet készítésére szánták, csak egy olyan gyors lehetőség, amellyel
bizonyos értékek gyorsan megtekinthetőek, főleg hibakeresési céllal. Formázott
kimenethez a string.format használható.

rawequal (v1, v2)

Bármilyen metaeljárás meghívása nélkül ellenőrzi, hogy v1 és v2 értéke megegyezik
-e. Visszatérési értéke boolean.

rawget (table, index)

Bármilyen metaeljárás meghívása nélkül lekéri a table[index] valódi értékét. A
table csak tömb lehet, míg az index bármilyen érték.

rawset (table, index, value)

Bármilyen metaeljárás meghívása nélkül value értékre állítja a table[index] valódi
értékét. A table csak tömb lehet, index bármilyen nil-től különböző érték, value
pedig bármilyen Lua érték.

A függvény visszatérési értéke a table tömb.

select (index, ˇˇˇ)

Ha az index argumentum egy szám, a visszatérési érték az index pozíciójú
argumentumok utáni összes argumentum. Egyébként az index értéke csak a "#"
karakterlánc lehet: ekkor a select a megkapott extra argumentumok számával tér
vissza.

setfenv (f, table)

A megadott függvény által használt környezetet cseréli le. Az f lehet egy Lua
függvény, vagy egy szám, amely a függvény veremben lévő pozícióját adja meg: az
1-es szint az a függvény, amely meghívta a setfenv függvényt. Visszatérési értéke a
megadott függvény

Abban az esetben, amikor f értéke 0, a setfenv a futó szál környezetét változtatja
meg. Ebben az esetben nincs visszatérési érték.

setmetatable (table, metatable)

A megadott tábla metatömbjét állítja be. (A többi típus metatömbje nem változtatható
meg a Lua-ból, csak a C-ből.) Ha a metatable értéke nil, törli a megadott tömb
metatömbjét. Ha az eredeti táblának van "__metatable" mezője, hiba keletkezik.

A függvény visszatérési értéke a table tömb.

tonumber (e [, base])

Megpróbálja a megadott argumentumot számmá alakítani. Ha az argumentum már
szám, vagy olyan karakterlánc, amely számmá alakítható, akkor visszatérési érték ez
a szám, egyéb esetben nil.

Az opcionális paraméter adja meg a szám feldoglozásának számrendszerét. Ez 2 és
36 közötti egész szám lehet. A 10 feletti számrendszereknél az 'A' (kis- vagy
nagybetűs formában is) 10-et jelent, 'B' 11-et, és így tovább, míg 'Z' 35-öt. A 10-es
számrendszernél (az alapértelmezett értéknél), a számnak lehet törtrésze valamint
hatványkitevője is (lásd §2.1). A többi számrendszer csak előjel nélküli egész típust
fogad el.

tostring (e)

Bármilyen típusú argumentumot kaphat, és ezt konvertálja elfogadható formátumú
karakterlánccá. A számok konvertálásának teljes leírásához lásd: string.format.

Ha az e metatömbjének van "__tostring" mezője, akkor a tostring a hozzátartozó
értéket hívja meg, e argumentummal, és az eredménye lesz ennek a hívásnak az
eredménye.

type (v)

Visszatérési értéke az egyetlen argumentumának típusa, karakterlánc formában. A
függvény lehetséges eredményei: "nil" (karakterlánc, és nem nil érték), "number",
"string", "boolean", "table", "function", "thread", és "userdata".

unpack (list [, i [, j]])

Visszatérési értékei a megadott tömb elemei. A függvény megegyezik a következő
kifejezéssel:

 return list[i], list[i+1], ˇˇˇ, list[j]

kivéve, hogy a fenti kód csak meghatározott számú elem esetén használható.
Alapértelmezés szerint i értéke 1 és j értéke a hossz operátor által meghatározott
listahossz (lásd §2.5.5).

_VERSION

Egy globális változó (nem függvény), amely a jelenlegi feldolgozó verziószámát
tartalmazza. A változó jelenlegi tartalma: "Lua 5.1".

xpcall (f, err)

A függvény hasonló a pcall-hoz, kivéve, hogy itt egy új hibakezelő is beállítható.

Az xpcall az f függvényt védett módban hívja meg, az err függvényt használva
hibakezelőként. Az f függvényen belüli hibák nem lesznek továbbítva, ehelyett az
xpcall elkapja a hibát, meghívja az err függvényt az eredeti hibaobjektummal, és
egy állapotkóddal tér vissza. Az első visszatérési érték egy boolean típus, amelyik
igaz, ha a hívás hiba nélkül befejeződik. Ebben az esetben a hívás visszatérési
értékei is visszatérnek az első után. Hiba esetén a visszatérési érték false, valamint
az err függvény eredménye.

5.2 - Korutin kezelés

A korutinokhoz kapcsolódó műveletek az alap függvénykönyvtár alkönyvtárához,
valamint a coroutine tömbhöz tartoznak. A korutinok általános ismertetése a §2.11
fejezetben található.

coroutine.create (f)

Egy új korutint hoz létre, f testtel. Az f csak Lua függvény lehet. Visszatérési értéke
a "thread" típusú új korutin.

coroutine.resume (co [, val1, ˇˇˇ])

Elkezdi, vagy folytatja a megadott co korutin futtatását. A korutin első folytatásakor
annak testét futtatja. A val1, ˇˇˇ értékek a test-függvény argumentumaiként
szerepelnek. Ha a korutin szüneteltetve lett, a resume újraindítja azt; a val1, ˇˇˇ
értékek a szüneteltetés eredményei.

Ha a korutin hiba nélkül lefut, a resume visszatérési értéke true, valamint a yield-nek
átadott értékek (ha a korutin szüneteltetve van) vagy bármilyen értékek, amelyek a
test-függvény visszatérési értékei (ha a korutin befejeződik). Hiba esetén a resume
visszatérési értéke false valamint a hibaüzenet.

coroutine.running ()

Visszatérési értéke a futó korutin, vagy nil ha a fő szálból lett meghívva.

coroutine.status (co)

Visszatérési értéke a co korutin állapota, karakterlánc alakban: "running", ha a
korutin fut (azaz, az hívta meg a status-t); "suspended", ha a korutin a yield
hívással fel lett függesztve, vagy még nem lett elindítva; "normal", ha a korutin aktív,
de nem fut (azaz, egy másik korutin folytatatta); valamint "dead", ha a korutin
befejezte a test-függvényt, vagy hibába ütközött.

coroutine.wrap (f)

Egy új korutint hoz létre, f testtel. Az f csak Lua függvény lehet. Visszatérési értéke
egy függvény, amely minden egyes híváskor folytatja a korutint. A függvényhez
társított argumentumok a resume extra argumentumai lesznek. Visszatérési értékei
megegyeznek a resume híváséval, kivéve az első booleant. Hiba esetén továbbítja a
hibát.

coroutine.yield (ˇˇˇ)

Felfüggeszti a hívó korutin futtatását. A korutin nem futtathat C függvényt,
metaeljárást vagy iterátort. A yield argumentumai a resume extra visszatérési értékei
lesznek.

5.3 - Modulok

A csomag függvénykönyvtár biztosítja modulok betöltését és létrehozását a Lua-ban.
Két függvénye közvetlenül a globális környezetből érhető el: a require és a module.
Minden egyéb a package tömbben található.

module (name [, ˇˇˇ])

Egy modult készít. Ha a package.loaded[name] tömb már létezik, ez a tömb lesz a
modul. Egyébként ha létezik a megadott nevű globális t tömb, az a tömb lesz a
modul. Egyéb esetben egy üres t tömböt hoz létre, és a globális name és a
package.loaded[name] értékeként állítja be azt. A függvény szintén létrehozza a
t._NAME mezőt a megadott névvel, a t._M mezőt a modullal (a t-vel magával), és a
t._PACKAGE mezőt a csomag nevével (a teljes modulnévvel, mínusz az utolsó
komponens, lásd lentebb). Végül, a module beállítja a t-t, mint a jelenlegi függvény új
környezetét, és a package.loaded[name] új értékeként, így a require visszatérési
értéke t.

Ha a name egy vegyes név (tehát egyenként pontokkal elválasztva), a module
tömböket készít (vagy újra felhasznál, ha már léteznek) az egyes komponensek
számára. Például, ha a name értéke a.b.c, akkkor a module a modult a globális a
tömb b mezőjének c mezőjében tárolja.

A függvény kaphat options argumentumokat a modul neve után, ahol minden egyes
opció egy függvény, amelyet a modul használ fel.

require (modname)

Betölti a megadott modult. A függvény először a package.loaded tömböt vizsgálja
meg, hogy a megadott modname modul be van -e már töltve.Ha igen, a require a
package.loaded[modname] értékével tér vissza. Egyébként megpróbál egy betöltőt
keresni a modulhoz.

Ha talál ilyet, a require végrehajtja a package.preload[modname] lekérést. Ha ennek
van értéke, ez lesz a betöltő (ami egy függvény). Egyébként a require egy Lua
betöltőt keres a package.path változóban megadott útvonalakon. Ha ez sikertelen,
akkor egy C betöltőt, a package.cpath változóban megadott útvonalakon. Ha ez is
sikertelen, akkor egy minden-az-egyben betöltőt próbál meg (lásd lentebb).

Egy C függvénykönyvtár betöltésekor a require egy dinamikusan kapcsolódó
készséget használ az alkalmazás és a függvénykönyvtár összekapcsolására. Ezután
megpróbál egy C függvényt keresni az eljáráskönyvtáron belül, amely betöltőként
használható. Ennek a C függvénynek a neve "luaopen_" karakterlánccal kezdődik, és
a modul nevével folytatódik, ahol minden pontot aláhúzás helyettesít. Ezen felül, ha a
modul nevében van egy kötőjel, az előtte lévő rész (a kötőjellel együtt) el lesz
távolítva. Így például az a.v1-b.c név esetén a függvény neve luaopen_b_c lesz.

Ha a require nem talál sem Lua, sem C függvénykönyvtárat a modulnak, akkor a
minden-az-egyben betöltőt hívja meg. Ez a C útvonalat vizsgálja át a megadott
modul tőalakú nevű eljáráskönyvtáráért. Így például az a.b.c név esetén a require
az a nevű C függvénykönyvtárat fogja keresni. Ha talál ilyet, ebben keres egy
almodult, esetünkban ez a luaopen_a_b_c. Ezzel a lehetőséggel a csomagkezelő
több C almodult is egy függvénykönyvtárba csomagolhat, amelyekben megmarad az
eredeti megnyitó függvény.

Ha van betöltő, a require meghívja az a modname argumentummal. Ha a betöltőnek
van visszatérési értéke, a require a package.loaded[modname] értékeként állítja be
azt. Ha nincs, és a package.loaded[modname] mezőnek nincs értéke, akkor a require
a true értéket rendeli ehhez a bejegyzéshez. Bármilyen más esetben a require
visszatérési értéke a package.loaded[modname] végső értéke.

Ha a modul futtatása közben hiba lép fel, vagy nem található betöltő a modulhoz, a
require hibát jelez.

package.cpath

A require által használt C betöltő útvonalát határozza meg.

A Lua a package.cpath értékét a package.path-hoz hasonlóan határozza meg, a
LUA_CPATH környezeti változó használatával (valamint a másik, luaconf.h fájlban
megadott útvonal segítségével).

package.loaded

A require által használt tömb, a már betöltött modulok ellenőrzésére. A modname
modul betöltésekor, ha a package.loaded[modname] nem hamis, a require
visszatérési értéke az ott tárolt érték.

package.loadlib (libname, funcname)

Dinamikusan összekapcsolja a fő programot a libname nevű C függvénykönyvtárral.
Ebben a függvénykönyvtárban megkeresi a funcname függvényt, és ezzel tér vissza,
C függvényként. (Tehát a funcname függvénynek követnie kell a protokollt (lásd
lua_CFunction)).

Ez egy alacsonyszintű függvény, amely teljesen eltér a csomag- és
modulrendszertől. A require-től eltérően, nem hajt végre útvonal-kereséseket és
nem vesz fel automatikusan kiterjesztéseket. A libname a C eljáráskönyvtár teljes
neve kell hogy legyen, beleértve az útvonalat és a kiterjesztést is. A funcname a C
eljáráskönyvtár által exportált pontos név (ez a használt C fordítótól és a linkelőtől is
függ).

Ez a függvény ANSI C-ben nincs támogatva. Mint ilyen, csak néhány platformon
 elérhető (Windows, Linux, Mac OS X, Solaris, BSD, valamint az olyan Unix
rendszerek, amelyek támogatják a dlfcn szabványt).

package.path

A require által használt Lua betöltő útvonalát határozza meg.

Indításkor a Lua a LUA_PATH környezeti változó értékét rendeli hozzá, vagy
a luaconf.h fájlban megadott alapértelmezett útvonalat, ha a környezeti változó
nincs megadva. A környezeti változó értékében minden egyes ";;" kifejezés az
alapértelmezett útvonalra lesz cserélve.

Az útvonal minták sorozata, pontosvesszővel elválasztva. A require minden egyes
mintában a kérdőjeleket a filename-ra cseréli le, ami a modname értéke, ahol minden
egyes pont a "könyvtár elválasztóra" lesz cserélve (mint pl. a "/" Unix rendszereken);
majd megpróbálja betölteni az így kapott fájlnevet. Így tehát, ha a Lua útvonal értéke
a következő:

 "./?.lua;./?.lc;/usr/local/?/init.lua"

akkor a foo modul Lua betöltője a következő fájlokat próbálja meg betölteni:
./foo.lua, ./foo.lc, és /usr/local/foo/init.lua, ebben a sorrendben.

package.preload

Egy tömb, amely a modulok betöltőit tartalmazza. (lásd require).

package.seeall (module)

A module metatömbjét állítja be, amelyben az __index mező a globális környezetre
hivatkozik, így ez a modul megörökli a globális környezet változóit is. A module
függvény beállításaként használható.

5.4 - Karakterlánc kezelés

Ez a függvénykönyvtár karakterláncok kezeléséhez biztosít általános függvényeket,
úgy mint kisebb karakterláncok megtalálása és kivonása, valamint minta-illeszkedés.
A Lua nyelvben a karakterláncok indexelése 1-től kezdődik (és nem 0-tól, mint C-
ben). Az indexek lehetnek negatívak, ekkor hátulról indexelésként a karakterlánc
végétől számítva lesz feldolgozva. Így tehát az utolsó karakter pozíciója -1, és így
tovább.

A karakterlánc eljáráskönyvtár összes függvénye a string tömb mezőiként érhetőek
el. A karakterláncoknak van metatömbje is, amelynek az __index mezője a string
tömbre mutat. Így a karakterlánc-függvények objektum-orientált formában
használhatóak. Például a string.byte(s, i) kifejezés felírható s:byte(i) formában
is.

string.byte (s [, i [, j]])

Visszatérési értékei az s[i], s[i+1], ˇˇˇ, s[j] karakterek belső numerikus kódjai.
Az i alapértelmezett értéke 1; a j értéke pedig i.

Jegyezzük meg, hogy a belső numerikus kódok nem feltétlenül ugyanazok az egyes
platformokon.

string.char (ˇˇˇ)

Nulla vagy több egész típusú argumentumot kap. Az argumentumok számával
megegyező hosszúságú karakterlánccal tér vissza, ahol minden egyes karakter belső
numerikus kódja megegyezik a hozzá tartozó argumentummal.

Jegyezzük meg, hogy a belső numerikus kódok nem feltétlenül ugyanazok az egyes
platformokon.

string.dump (function)

Visszatérési értéke a megadott függvény bináris karakterlánc formában, így később a
loadstring hívás ezen a karakterláncon a függvény másolatát adja. A function csak
felsőértékek nélküli Lua függvény lehet.

string.find (s, pattern [, init [, plain]])

Az s karakterláncban megkeresi a pattern első egyezését. Ha talál ilyet, a find az s
indexeivel tér vissza, ahol az egyezés kezdődik, illetve végződik; egyéb esetben a
visszatérési értéke nil. A harmadik, opcionális szám alakú init argumentum adja
meg, hol kezdődjön a keresés; az alapértelmezett értéke 1, és negatív is lehet. A
negyedik, opcionális plain argumentum true értéke kikapcsolja a minta illeszkedési
lehetőségeket, azaz a függvény egy sima "al-karakterlánc keresést" hajt végre, ahol
a pattern-ban egy karakter sem minősül "mágikusnak". Ha a plain meg van adva,
akkor az init-nek is értéket kell adni.

Ha a minta értékeket is kiemel, akkor ezek is visszatérnek, a két index után.

string.format (formatstring, ˇˇˇ)

Visszatérési értéke az első (karakterlánc) argumentumban megadott formába
átalakított változó számú argumentumok. A formátum a szabványos C függvények
printf családjának szabályait követi. Az egyetlen különbség, hogy a
szabályozók/módosítók (*, l, L, n, p, és h) nem támogatottak, valamint van egy extra
opció, a q. Ez használható arra, hogy a karakterláncok biztonságosan
visszaolvashatóak legyenek a Lua feldolgozó számára: a karakterláncok dupla
idézőjelek közé kerülnek, és a karakterláncban minden dupla idézőjel, újsor karakter,
beágyazott nulla és backslash karakterek biztonságos formátumúra lesznek alakítva.
Például a

 string.format('%q', 'a string with "quotes" and \n new line')

hívás a következő karakterláncot eredményezi:

 "a string with \"quotes\" and \
 new line"

A c, d, E, e, f, g, G, i, o, u, X, és x opciók mind számot várnak paraméterként, míg a q
és s karakterláncokat.

A függvény nem fogad el olyan karakterláncot, amely beágyazott zérót tartalmaz.

string.gmatch (s, pattern)

Visszatérési értéke egy olyan iterációs függvény, amely minden hívásakor az s
karakterlánc egy újabb, pattern mintára illeszkedő részével tér vissza.

Ha a pattern nem emel ki értékeket, akkor minden híváskor az egész egyezés lesz
az eredmény.

Például a következő ciklus:

 s = "hello world from Lua"
 for w in string.gmatch(s, "%a+") do
 print(w)
 end

végigiterál az s karakterlánc szavain, majd soronként kiírja azokat. A következő példa
a megadott karakterlánc összes key=value párját egy tömbbe gyűjti össze:

 t = {}
 s = "from=world, to=Lua"
 for k, v in string.gmatch(s, "(%w+)=(%w+)") do
 t[k] = v
 end

string.gsub (s, pattern, repl [, n])

Visszatérési értéke az s karakterlánc másolata, amelyben a pattern minta összes
illeszkedése le lett cserélve a megadott repl értékre, ami lehet karakterlánc, tömb
vagy függvény. A gsub második visszatérési értéke az elvégzett cserék száma.

Ha a repl karakterlánc, akkor annak értéke lesz a cserekifejezés. A % karakter
vezérlőkarakterként működik: a repl-ben szereplő minden %n formátumú kifejezés,
ahol n 1 és 9 közötti érték, az n. számú kiemelt értéket adja vissza (lásd lentebb). A
%0 kifejezés az egész egyezést adja vissza. A %% kifejezés egy % karaktert jelent.

Ha a repl tömb, akkor a tömb minden egyezéskor le lesz kérdezve, ahol a minta lesz
a kulcs; ha a minta nem emel ki értéket, akkor az egész egyezés lesz a kulcs.

Ha a repl függvény, akkor ez minden egyezéskor meg lesz hívva, argumentumai
pedig sorban az illeszkedő al-karakterláncok lesznek. Ha a minta nem emel ki
értéket, akkor az egész egyezés lesz az egyetlen argumentum.

Ha a tömb-lekérdezés értéke vagy a függvény visszatérési értéke karakterlánc vagy
szám, az lesz a cserekifejezés, egyébként, ha az false vagy nil, nem történik csere
(azaz, az eredeti egyezés a karakterláncban marad).

Az utolsó, opcionális n paraméter a maximális cserék számát szabályozza. Például,
ha n értéke 1, csak a pattern minta első illeszkedése lesz lecserélve.

Következzen néhány példa:

 x = string.gsub("hello world", "(%w+)", "%1 %1")
 --> x="hello hello world world"

 x = string.gsub("hello world", "%w+", "%0 %0", 1)
 --> x="hello hello world"

 x = string.gsub("hello world from Lua", "(%w+)%s*(%w+)", "%2 %1")
 --> x="world hello Lua from"

 x = string.gsub("home = $HOME, user = $USER", "%$(%w+)", os.getenv)
 --> x="home = /home/roberto, user = roberto"

 x = string.gsub("4+5 = $return 4+5$", "%$(.-)%$", function (s)
 return loadstring(s)()
 end)

 --> x="4+5 = 9"

 local t = {name="lua", version="5.1"}

 x = string.gsub("$name%-$version.tar.gz", "%$(%w+)", t)

 --> x="lua-5.1.tar.gz"

string.len (s)

Karakterlánc paramétert kap, és a hosszával tér vissza. Az "" üres karakterlánc
hossza 0. A beágyazott zérók is beleszámítanak ebbe, így a "a\000bc\000"
karakterlánc hossza 5.

string.lower (s)

Karakterláncot kap, és a másolatával tér vissza, amelyben az összes nagybetű
kicsire lesz cserélve. Minden egyéb karakter változatlan marad. A nagybetűk
definíciója a nyelvi beállításoktól függően eltérő lehet.

string.match (s, pattern [, init])

Az s karakterláncban megkeresi a pattern minta első egyezését. Ha talál ilyet, akkor
a match a talált részekkel tér vissza; egyéb esetben a visszatérési érték nil. Ha
a pattern minta nem emel ki értéket, az egész egyezés visszatér. A harmadik,
opcionális szám argumentum, az init adja meg, hol kezdődjön a keresés; az
alapértelmezett értéke 1, és negatív is lehet.

string.rep (s, n)

Visszatérési értéke a megadott s karakterlánc n számú összefűzött másolata.

string.reverse (s)

Visszatérési értéke az s karakterlánc fordítottja.

string.sub (s, i [, j])

Visszatérési értéke az s karakterlánc része, amely i indexnél kezdődik és j-ig tart; i
és j is lehet negatív. Ha a j nincs megadva, -1-ként lesz értelmezve (ami
megegyezik a karakterlánc hosszával). Általánosságban, a string.sub(s,1,j) hívás
az s j hosszúságú előtagjával, míg a string.sub(s, -i) hívás az s i hosszúságú
utótagjával tér vissza.

string.upper (s)

Karakterláncot kap, és a másolatával tér vissza, amelyben az összes kisbetű nagyra
lesz cserélve. Minden egyéb karakter változatlan marad. A kisbetűk definíciója a
nyelvi beállításoktól függően eltérő lehet.

5.4.1 - Minták

Karakterosztályok:

Egy karakterosztály karakterek sorozatát jelenti. A következő kombinációk
karakterosztályokat írnak le:

• x: (ahol x nem mágikus karakter: ^$()%.[]*+-?) az x karaktert jelenti.
• .: (egy pont) minden karakternek megfelel.
• %a: minden betűnek megfelel.
• %c: minden vezérlőkarakternek megfelel.
• %d: minden számjegynek megfelel.
• %l: minden kisbetűs betűnek megfelel.
• %p: minden írásjelnek megfelel.
• %s: minden szóköz karakternek megfelel.
• %u: minden nagybetűs betűnek megfelel.
• %w: minden alfanumerikus karakternek megfelel.
• %x: minden hexadecimális számjegynek megfelel.
• %z: 0-szor előforduló karakternek felel meg.
• %x: (ahol x bármilyen nem alfanumerikus karatker) az x karakternek felel meg.

Ez a mágikus karakterek semlegesítésének alapértelmezett módja. Bármilyen
írásjelet (még a nem mágikusakat is) megelőzhet a semlegesítő '%' karakter;
ebben az esetben a mintában saját magát fogja jelenteni.

• [sorozat]: A megadott sorozat összes karakterének uniójával képez egy
osztályt. Karakterek tartománya megadható a tartomány záró karakterének '-'
jellel történő elválasztásával. Minden %x formátumú fentebb leírt osztály
használható a sorozat elemeként. Az összes többi karakter saját magát jelenti.
Például, a [%w_] (vagy a [_%w]) az összes alfanumerikus karaktert és az
aláhúzást fogja jelenteni, a [0-7] oktális számjegyeket, a [0-7%l%-] az oktális
számjegyeket, kisbetűs betűket, valamint a '-' karaktert jelenti.

A tartományok és az osztályok között nincsen együttműködés, tehát a [%a-z]
vagy [a-%%] alakú minta nem értelmezhető.

• [^sorozat]: A megadott sorozat komplementerét (kiegészítését) jelenti, ahol a
sorozat a fentebb leírtak szerint van értelmezve.

Az összes osztályt, amit egy betű jelöl (%a, %c, stb.), a nagybetűs alakja az osztály
komplemeterét (kiegészítését) jelenti. Például, az %S minden nem-szóköz karakternek
megfelel.

A betű, szóköz és egyéb karaktercsoportok definíciója mindig a nyelvi beállításoktól
függ. A gyakorlatban az [a-z] osztály nem minden esetben ugyanaz, mint a %l.

Minta elem:

Egy minta elem lehet

• egy karakterosztály, amely az osztály bármely egyetlen karakterével
megegyezik;

• egy karakterosztály, amit egy '*' jel követ, amely az osztály karaktereinek 0
vagy több ismétlődésével egyezik meg. Ez az ismétlődés mindig a lehető
leghosszabb sorozattal fog megegyezni;

• egy karakterosztály, amit egy '+' jel követ, amely az osztály karaktereinek 1
vagy több ismétlődésével egyezik meg. Ez az ismétlődés mindig a lehető
leghosszabb sorozattal fog megegyezni.

• egy karakterosztály, amit egy '-' jel követ, amely az osztály karaktereinek
szintén 0 vagy több ismétlődésével egyezik meg. Viszont a '*' jellel
ellentétben, ez az elemismétlődés mindig a lehető legrövidebb sorozattal fog
megegyezni;

• egy karakterosztály, amit egy '?' jel követ, amely az osztály karaktereinek 0
vagy 1 ismétlődésével egyezik meg;

• %n, ahol n 1 és 9 közötti szám; az ilyen elemek az n-dik számú kiemelt értéket
adja vissza (lásd lentebb);

• %bxy, ahol x és y két különböző karakter; az ilyen elemek olyan
karakterláncokkal egyeznek meg, amelyek x-el kezdődnek és y-al végződnek,
és ahol x és y kiegyensúlyozott. Ez azt jelenti, hogy a karakterlánc balról
jobbra lesz olvasva, és az x-ek esetén +1-el növekszik, y-ok esetén -1-el
csökken egy számláló, a végső y az első olyan y, ahol a számláló eléri a 0-t.
Például a %b() elem kiegyenlített zárójelekkel egyezik meg.

Minta:

A minta mintaelemek sorozata. A '^' jel a minta elején megszabja, hogy a minta csak
a keresendő karakterlánc elejét, míg a '$' jel a minta végén azt, hogy a keresendő
karakterlánc végét vizsgálja. Más pozíciókban a '^' és '$' jeleknek nincs speciális
jelentésük, és saját magukat reprezentálják.

Kiemelt értékek:

A minták tartalmazhatnak olyan almintákat, amelyek zárójelek között vannak; ezek
kiemelt értékeket jelentenek. Ha egy egyezés sikeres, a keresendő karakterlánc
egyező al-karakterláncai eltároldónak (kiemelődnek) későbbi használatra. A kiemelt
értékek a nyitó zárójelek sorrendje szerint vannak számolva. Például a
"(a*(.)%w(%s*))" minta esetén a karakterláncban a "a*(.)%w(%s*)" mintára egyező
rész az első kiemelt érték (és a száma 1); A "."-ra illeszkedő karakter 2-es számmal
lesz kiemelve, és a "%s*"-ra illeszkedő rész a 3-as.

Egy speciális eset, amikor üres kiemelés () történik, ez esetben a visszatérési érték
a jelenlegi karakterlánbeli pozíció (egy szám). Például, az "()aa()" minta a "flaaap"
karakterláncon két eredményt hoz: 3 és 5.

A minta nem tartalmazhat beágyazott zérókat, helyette a %z használható.

5.5 - Tömb kezelés

Ez a függvénykönyvtár tömbök kezeléséhez biztosít általános függvényeket. A
függvényei a table tömb mezőiként érhetőek el.

Ennek az eljáráskönyvtárnak a függvényei csak rendezett tömbökön és listákon
működik. Ezeknél a függvényeknél, ha a tömb "hosszáról" van szó, akkor a hossz
operátor eredménye értendő ezalatt.

table.concat (table [, sep [, i [, j]]])

Visszatérési értéke table[i]..sep..table[i+1] ˇˇˇ sep..table[j]. A sep
alapértelemezett értéke az üres karakterlánc, az i értéke 1, és a j alapértelmezett
értéke a tömb hossza. Ha az i értéke nagyobb, mint j, üres karakterlánccal tér
vissza.

table.insert (table, [pos,] value)

A megadott value értéket elhelyezi a table tömbben, pos pozícióban, a többi elemet
felfelé szabad helyre csúsztatva, ha szükséges. A pos alapértelmezett értéke n+1,
ahol n értéke a tömb hossza (lásd §2.5.5), így a table.insert(t,x) hívás az x
értéket a t tömb végére helyezi.

table.maxn (table)

Visszatérési értéke a tömb legmagasabb numerikus indexe, vagy zéró, ha a tömbnek
nincsenek pozitív numerikus indexei. (a függvény ehhez lineáris bejárást hajt végre
az egész táblán.)

table.remove (table [, pos])

A table tömbből eltávolítja a pos pozícióban lévő elemet, a többi elemet lefelé
szabad helyre csúsztatva, ha szükséges. Visszatérési értéke az eltávolított elem
értéke. A pos alapértelmezett értéke n, ahol n a tömb hossza, így a table.remove(t)
hívás a t tömb utolsó elemét távolítja el.

table.sort (table [, comp])

A tömböt a megadott sorrend szerint rendezi, belsőleg, table[1]-től table[n]-ig, ahol
n a tömb hossza. Ha a comp adott, akkor annak egy függvénynek kell lennie, ami két
táblaelemet kap argumentumként, és true értékkel tér vissza, ha az első kisebb, mint

a második (így tehát a not comp(a[i+1],a[i]) igazzá válik a rendezés után). Ha
a comp nincs megadva, akkor az alapértelmezett < Lua operátor lesz használatban.

A rendezési algoritmus nem állandó, tehát még az egyenlőnek értékelt elemek relatív
pozíciója is megváltozhat a rendezés közben.

5.6 - Matematikai függvények

Ez a függvénykönyvtár az alapértelmezett C matematikai függvénykönyvtárat
valósítja meg. A függvényei a math tábla mezőiként érhetőek el.

math.abs (x)

Az x abszolútértékével tér vissza.

math.acos (x)

Az x arc cosinus-ával tér vissza (radiánokban).

math.asin (x)

Az x arc sinus-ával tér vissza (radiánokban).

math.atan (x)

Az x arc tangensével tér vissza (radiánokban).

math.atan2 (x, y)

Visszatérési értéke az x/y arc tangense (radiánokban), de mindkét paraméter előjelét
használja az eredmény quadránsának meghatározásához. (Szintén megfelelően
kezeli azt, ha az y értéke zéró.)

math.ceil (x)

Visszatérési értéke a legkisebb egész, amely nagyobb, vagy egyenlő, mint x.

math.cos (x)

Az x cosinus-ával tér vissza (a fok radiánban van megadva).

math.cosh (x)

Az x hiperbolikus cosinus-ával tér vissza.

math.deg (x)

A radiánokban megadott x értékével tér vissza fokokban.

math.exp (x)

Visszatérési értéke ex.

math.floor (x)

Visszatérési értéke a legnagyobb egész, amely kisebb, vagy egyenlő, mint x.

math.fmod (x, y)

Visszatérési értéke az x y-al való osztásából származó maradék.

math.frexp (x)

Visszatérési értéke m és e a x = m2e kifejezésből, e egy egész, és az m abszolútértéke
a [0.5, 1) tartományban (vagy zéró, ha x zéró).

math.huge

A HUGE_VAL értéke, egy érték, amely nagyobb vagy egyenlő, mint bármilyen más
numerikus érték.

math.ldexp (m, e)

Visszatérési értéke m2e (e egész típusú).

math.log (x)

Visszatérési értéke x természetes logaritmusa.

math.log10 (x)

Visszatérési értke x 10-es alapú logaritmusa.

math.max (x, ˇˇˇ)

Az argumentumok legmagasabb értékével tér vissza.

math.min (x, ˇˇˇ)

Az argumentumok legalacsonyabb értékével tér vissza.

math.modf (x)

Két értékkel tér vissza, x egész és tört értékével.

math.pi

A PI értéke.

math.pow (x, y)

Visszatérési értéke xy. (Az érték kiszámítására az x^y kifejezés is használható.)

math.rad (x)

Visszatérési értéke a fokokban megadott x szög értéke radiánban.

math.random ([m [, n]])

Ez a függvény egy látszólagos véletlenszám generátort valósít meg a rand ANSI C
függvény segítségével. (A statisztikai tulajdonságaira nincs garancia.)

Argumentumok nélküli használat esetén a visszatérési érték egy véletlenszerű valós
szám a [0,1) tartományból. Ha a numerikus m argumentum adott, a math.random
visszatérési értéke egy véletlenszerű egész szám az [1, m] tartományból. Ha mindkét
numerikus paraméter, m és n is adott, a math.random visszatérési értéke egy
véletlenszerű egész szám az [m, n] tartományból.

math.randomseed (x)

Az x-et a pszeudo-véletlenszám generátor szórásaként állítja be: egyenlő szórás
egyenlő sorozatú számokat állít elő.

math.sin (x)

Visszatérési értéke x sinus-a (a fok radiánban van megadva).

math.sinh (x)

Visszatérési értéke x hiperbolikus sinus-a.

math.sqrt (x)

Visszatérési értéke x négyzetgyöke. (Az érték kiszámítására az x^0.5 kifejezés is
használható.)

math.tan (x)

Visszatérési értéke x tangense (a fok radiánban van megadva).

math.tanh (x)

Visszatérési értéke x hiperbolikus tangense.

5.7 - Bemeneti és kimeneti lehetőségek

Az I/O függvénykönyvtár kétfajta fájlkezelést is biztosít. Az első implicit fájlleírókat
használ, így beállítható alapértelmezett be- illetve kimeneti fájl; ezután minden
művelet ezeken az alapértelmezett fájlokon lesz végrehajtva. A másik mód explicit
fájlleírókat használ.

Implicit fájlleírók esetén minden művelet az io tömbből érhető el. Explicit fájlleírók
esetén az io.open művelet egy fájlleíróval tér vissza, és a később minden művelet
ennek a fájlleírónak eljárásaként érhető el.

Az io tömb három előre definiált fájlleírót is tartalmaz, a megszokott C jelentésük
szerint: io.stdin, io.stdout, és io.stderr.

Ha nincs másként feltüntetve, minden I/O művelet nil értékkel tér vissza hiba esetén
(valamint egy hibaüzenettel, második eredményként). Minden nil-től különböző érték
sikeres végrehajtást jelent.

io.close ([file])

Megegyezik a file:close() hívással. file argumentum nélkül az alapértelmezett
kimeneti fájlt zárja be.

io.flush ()

Megegyezik a file:flush művelettel, de az alapértelmezett kimeneti fájlon hajtja
végre.

io.input ([file])

Ha a fájlnév meg van adva, megnyitja a nevezett fájl (szöveges módban), és az
alapértelmezett bemeneti fájlként állítja be azt. Ha egy fájlkezelővel van meghívva,
akkor egyszerűen ezt a kezelőt állítja be az alapértelmezett bemeneti fájlnak. Ha
paraméterek nélkül van meghívva, visszatérési értéke a jelenlegi alapértelmezett
bemeneti fájl.

Hiba esetén a függvény hibát ér el, és nem hibakóddal tér vissza.

io.lines ([filename])

Megnyitja a megadott fájlt olvasási módban, és annak iterációs függvényével tér
vissza, ami minden híváskor a fájl egy újabb sorával tér vissza. Így a következő
szerkezet

 for line in io.lines(filename) do body end

végigiterál a fájl sorain. Amikor az iterátor függvény eléri a fájl végét, nil értékkel tér
vissza (hogy befejezze a ciklust) és automatikusan bezárja a fájlt.

Az io.lines() hívás (fájlnév nélkül) megegyezik a io.input():lines() hívással,
tehát az alapértelmezett bemeneti fájl sorain léptet végig. Ebben az esetben nem
zárja be a fájlt, amikor a ciklus véget ér.

io.open (filename [, mode])

A függvény megnyit egy fájlt, a mode karakterlánc által megszabott módban.
Visszatérési értéke egy új fájlkezelő, vagy hiba esetén nil és egy hibaüzenet.

A mode karakterlánc a következő értékeket veheti fel:

• "r": olvasási mód (alapértelmezett);
• "w": írási mód;
• "a": hozzáfűzési mód;
• "r+": frissítési mód, minden előzetes adat megmarad;
• "w+": frissítési mód, minden előzetes adat törölve lesz;
• "a+": frissítési mód, minden előzetes adat megmarad, írni csak a fájl végére

lehet.

A mode karakterlánc végződhet 'b' karakterrel, amely néhány operációs rendszeren
szükséges, hogy a fájl bináris módban nyíljon meg. Ez a karakterlánc ugyanaz, mint
a szabványos C függvényben használt fopen.

io.output ([file])

Az io.input-hoz hasonlít, de az alapértelmezett kimeneti fájlon hajtja végre a
műveleteket.

io.popen ([prog [, mode]])

Elindítja a prog programot külön folyamatként, és egy fájlkezelővel tér vissza, amivel
a programból adat olvasható ki (ha a mode értéke "r", ami az alapértelmezett érték)
vagy adat írható a program számára (ha a mode értéke "w").

Ez a függvény a rendszertől függ, és nem érhető el minden platformon.

io.read (ˇˇˇ)

Megegyezik az io.input():read hívással.

io.tmpfile ()

Visszatérési értéke egy ideiglenes fájl kezelője. Ez a fájl frissítési módban lesz
megnyitva, és automatikusan törölve lesz, amikor a program futása befejeződik.

io.type (obj)

Ellenőrzi, hogy a megadott obj érvényes fájlkezelő -e. Visszatérési értéke a "file"
karakterlánc, ha az obj egy nyitott fájl, "closed file", ha az obj egy bezárt fájl,
és nil, ha az obj nem fájlkezelő.

io.write (ˇˇˇ)

Megegyezik az io.output():write hívással.

file:close ()

Bezárja a megadott file fájlkezelőt. Megjegyzendő, hogy a fájlok automatikusan
bezáródnak, amikor a kezelőiket összegyűjti a szemétgyűjtő, de ez nem
meghatározható időbe telik.

file:flush ()

A file-ba írt minden adatot elment.

file:lines ()

Egy iterációs függvényével tér vissza, ami minden híváskor a fájl egy újabb sorával
tér vissza. Így a következő szerkezet

 for line in file:lines() do body end

végigiterál a fájl sorain. (Az io.lines-tól eltérően, ez a függvény nem zárja be a fájlt
a ciklus végén.)

file:read (ˇˇˇ)

A megadott formátumnak megfelelően olvas a file fájlból. Minden formátum esetén
az olvasott karakterlánc (vagy szám) lesz a visszatérési érték, vagy nil, ha a
megadott formátumban nem olvasható ki adat. Ha formátum nélkül van meghívva, az
alapértelmezett formátum lesz használva, ami a következő egész sort olvassa (lásd
lentebb).

A következő formátumok használhatóak:

• "*n": egy számot olvas; ez az egyetlen formátum, ami számértékkel tér vissza
karakterlánc helyett.

• "*a": az egész fájlt beolvassa a jelenlegi pozíciótól. A fájl végén üres
karakterlánccal tér vissza.

• "*l": a következő sort olvassa (a sorvéget átugorva), a fájl végén a
visszatérési érték nil. Ez az alapértelmezett érték.

• szám: a megadott számú hosszúságú karakterláncot olvassa, a fájl végén a
visszatérési érték nil. Ha a szám 0, nem olvas semmit, és a visszatérési érték
egy üres karakterlánc, vagy a fájl végén nil.

file:seek ([whence] [, offset])

Lekéri a fájl pozícióját, a fájl elejétől mérve, vagy beállítja a megadott offset
pozícióra, a megadott whence karakterlánctól függően, ami a következő értékek
egyike lehet:

• "set": az alap a 0 pozíció (a fájl kezdete);
• "cur": az alap a jelenlegi pozíció;
• "end": az alap a fájl vége;

Siker esetén a seek függvény visszatérési értéke a végső pozíció, amelynek mértéke
a fájl elejétől mérődik, byteokban. Ha a függvény sikertelenül ér véget, a visszatérési
értéke nil, valamint egy hibaüzenet, ami a hibáról ad további információt.

A whence alapértelmezett értéke "cur", az offset értéke pedig 0. Így a file:seek()
hívás visszatérési értéke a jelenlegi fájl pozíciója, változtatás nélkül; a
file:seek("set") hívás a fájl elejére állítja a pozíciót (és 0-val tér vissza); valamint
a file:seek("end") hívás a fájl végére állítja a pozíciót, és a fájl méretével tér
vissza.

file:setvbuf (mode [, size])

A kimeneti fájl bufferének módját állítja be. Háromféle mód elérhető:

• "no": nincs bufferelés; minden kimeneti művelet eredménye azonnal
megjelenik.

• "full": teljes bufferelés; a kimeneti műveletek csak akkor hajtódnak végre,
amikor a buffer megtelik (vagy a fájl explicit módon ki lesz íratva a fájlba (lásd
io.flush)).

• "line": soros bufferelés; a kiemenet egy újsorig lesz bufferelve, vagy van
valamilyen bemenet van speciális fájlokból (például egy terminális eszközről).

Az utolsó két esetben a size argumentum adja meg a buffer méretét, byteokban. Az
alapértelmezett értéke egy elfogadható méret.

file:write (ˇˇˇ)

A megadott argumentumok értékeit a file fájlba írja. Az argumentumok
karakterláncok és számok lehetnek. A többi érték kiírásához a tostring vagy
string.format használandó a write hívás előtt.

5.8 - Operációs rendszer szolgáltatások

Ez a függvénykönyvtár a os tömbön kesztül érhető el.

os.clock ()

Visszatérési értéke a program által használt CPU idő megbecsült értéke.

os.date ([format [, time]])

Visszatérési értéke a dátumot és időt tartalmazó karakterlánc vagy tömb, a
megadott format formátumban.

Ha a time argumentum meg van adva, ez az időpont lesz formázva (lásd az os.time
függvényt ennek az értéknek a leírásáért). Egyébként a date a jelenlegi időt
formázza.

Ha a format '!' jellel kezdődik, akkor a dátum az egységes egyetemes idő szerint
lesz formázva. Ha ezután az opcionális karakter után a format értéke *t, akkor a
date visszatérési értéke egy tömb, a következő mezőkkel: year (négy számjegy),
month (1--12), day (1--31), hour (0--23), min (0--59), sec (0--61), wday (a hét napja, a
vasárnap értéke 0), yday (az év napja), és isdst (szökőév jelző, boolean).

Ha a format értéke nem *t, akkor a date visszatérési értéke a jelenlegi dátum
karakterláncként, melynek formázásának szabályai megegyeznek a strftime C
függvényével.

Argumentumok nélküli hívásakor a visszatérési értéke a dátum és az idő elfogadható
formátuma, amely a rendszertől és a jelenlegi nyelvi környezettől függ (tehát az
os.date() hívás ugyanaz, mint az os.date("%c")).

os.difftime (t2, t1)

Visszatérési értéke a t1 és t2 idők közötti különbség, másodpercekben. POSIX,
Windows, és néhány egyéb rendszeren ez ugyanaz, mint a t2-t1.

os.execute ([command])

Ez a függvény megegyezik a system C függvénnyel. A command parancs lesz
végrehajtva az operációs rendszer parancsértelmezője által. Visszatérési értéke egy
állapotkód, ami rendszerfüggő. Ha a command nincs megadva, visszatérési értéke egy
nem-zéró érték, ha a parancsértelmező elérhető, ellenkező esetben 0.

os.exit ([code])

Meghívja az exit C függvényt, az opcionális code kóddal, a gazdaprogram
befejezéséhez. A code alapértelmezett értéke a siker kódja.

os.getenv (varname)

Visszatérési értéke a folyamat varname nevű környezeti változójának értéke, vagy nil,
ha a változó nincs deklarálva.

os.remove (filename)

A megadott nevű fájlt vagy könyvtárat törli. A törlendő könyvtár csak üres lehet. Ha a
függvény sikertelen, visszatérési értéke nil, valamint egy hibaüzenet, amely a hibát
írja le.

os.rename (oldname, newname)

Átnevezi a megadott oldname nevű fájlt vagy könyvtárat newname nevűre. Ha a
függvény sikertelen, visszatérési értéke nil, valamint egy hibaüzenet, amely a hibát
írja le.

os.setlocale (locale [, category])

A program jelenlegi nyelvi környezetét állítja be. A locale egy karakterlánc, ami
megadja a nyelvi környezetet; a category egy opcionális karakterlánc, amely a
megváltoztatandó kategóriát adja meg: "all", "collate", "ctype", "monetary",
"numeric", vagy "time"; az alapértelmezett kategória az "all". A függvény
visszatérési értéke az új nyelvi környezet neve, vagy nil, ha a kérés nem
végrehajtható.

Ha az első argumentum nil, a függvény nem tesz semmit, csak a megadott kategória
jelenlegi nyelvi környezetének nevével tér vissza.

os.time ([table])

Visszatérési értéke a jelenlegi idő, ha argumentumok nélkül van meghívva, vagy a
megadott tömb által meghatározott dátum és idő. Ennek a tömbnek a következő
mezői kötelezőek: year, month, és day, a továbbiak csak opcionálisak: hour, min, sec,
és isdst (ezeknek a mezőknek a magyarázata a os.date függvény leírásában
szerepel).

A visszatérési érték egy szám, amelynek jelentése a rendszertől függ. POSIX,
Windows, és néhány egyéb rendszeren ez a szám egy megadott kezdőponttól (a
"korszaktól") eltelt másodpercek száma. Más rendszereken a jelentése nincs
megadva, és csak a date és a difftime paramétereiként használható.

os.tmpname ()

Visszatérési értéke egy karakterlánc, amely egy ideiglenes fájl neveként használható.
A fájlt explicit módon meg kell nyitni a használat előtt, valamint explicit módon el kell
távolni, ha nincs rá tovább szükség.

5.9 - A hibakeresési függvénykönyvtár

Ez a függvénykönyvtár a hibakeresési felülethez biztosít elérést a Lua programok
számára. Óvatosságra kell törekedni használatakor. Az itt található függvények
kizárólag csak hibakeresési vagy hasonló célokra használhatóak, például sebesség
optimalizálásra. Soha ne használjuk sima programozási eszközként, mivel nagyon
lelassíthatja a programot. Sőt, néhány függvénye megkerüli a Lua kód bizonyos
előfeltételezéseit (pl., egy függvény lokális változói kívülről nem elérhetőek, és az
userdata típus metatömbjei sem változtathatóak meg a Lua kódból), és így átugorhat
bizonyos biztonsági pontokon.

A függvénykönyvtár függvényei a debug tömb mezőiként érhetőek el. A szálakon
műveleteket végző függvényeknek van egy első, opcionális paramétere, ami a szál
maga, amin a művelet lesz végrehajtva. Az alapértelmezett érték mindig a jelenlegi
szál.

debug.debug ()

Egy párbeszédes módba lép a felhasználóval, és minden egyes karakterláncot
végrehajt, amit a felhasználó megad. Egyszerű parancsokkal, vagy más egyéb
hibakereső lehetőségekkel, a felhasználó megvizsgálhat globális és lokális
változókat, megváltozthathatja az értékeiket, kiértékelhet kifejezésket, stb. Ha a sor
csak a cont szót tartalmazza, befejezi a függvényt, és a hívó folytatja a végrehajtást.

A debug.debug parancsai lexikálisan nem egymásba ágyazott a függvényekkel, így
lokális változók közvetlen elérésére nincs lehetőség.

debug.getfenv (o)

Visszatérési értéke az o objektum környezete.

debug.gethook ([thread])

Visszatérési értéke a megadott szálhoz beállított hurok, három értékben: a jelenlegi
hurokfüggvény, a jelenlegi hurok maszk, valamint a jelenlegi hurokszámláló (ami a
debug.sethook függvénnyel állítható be).

debug.getinfo ([thread,] function [, what])

Visszatérési értéke egy tömb, amely a megadott függvény információit hordozza. A
függvény közvetlenül is megadható, vagy számalakban is, ez esetben a megadott
szál vermének szintjét jelenti ez a szám: a 0 a jelenlegi függvény (a getinfo maga);
az 1 szint az a függvény, ami meghívta a getinfo függvényt, és így tovább. Ha a
function szám, és nagyobb, mint az aktív függvények száma, a getinfo visszatérési
értéke nil.

A visszatérő tömb mezői ugyanazok lehetnek, mint a lua_getinfo esetén, attól
függően, hogy a what karakterlánc milyen mezőket tölt fel értékekkel. A what
alapértelmezés szerint minden elérhető információt lekér, kivéve az érvényes sorok
számának tömbjét. Ha az opcionális 'f' paraméter is meg van adva, egy func nevű
mező is létrejön, magávala a függvénnyel. Ha az 'L' paraméter szerepel, akkor
egy activelines mező jön létre, az érvényes sorok számának tömbjével.

Például, a debug.getinfo(1,"n").name kifejezés visszatérési értéke a jelenlegi
függvény neve, ha található hozzá elfogadható név, valamint a
debug.getinfo(print) visszatérési értéke egy tömb, amely a print függvény összes
elérhető információját tartalmazza.

debug.getlocal ([thread,] level, local)

Ennek a függvénynek a visszatérési értéke a verem level szintjén lévő függvény
local indexű változójának neve, valamint annak értéke. (Az első paraméter vagy
lokális változó indexe 1, és így tovább, egészen az utolsó aktív lokális változóig.) A
függvény visszatérési értéke nil, ha a megadott indexen nincs lokális változó, és
hibát ér el abban az esetben, ha a level a tartmányon kívüli érték. (A debug.getinfo
függvénnyel ellenőrizhető, hogy a szint érvényes -e.)

A '(' (nyitó zárójel) jellel kezdődő változók belső változókat írnak le (ciklus változók,
ideiglenes tárolók és C függvények lokális változói).

debug.getmetatable (object)

Visszatérési értéke a megadott object metatömbje, vagy nil, ha nincs metatömbje.

debug.getregistry ()

Visszatérési értéke a registry tömb (lásd §3.5).

debug.getupvalue (func, up)

Visszatérési értéke a megadott func függvény up indexen lévő felsőértékének neve,
valamint annak értéke. Visszatérési értéke nil, ha a megadott indexen nem található
felsőérték.

debug.setfenv (object, table)

A megadott object környezetét cseréli le a megadott table tömbre. Visszatérési
értéke az object objektum.

debug.sethook ([thread,] hook, mask [, count])

A megadott függvényt állítja be hurokként. A mask karakterlánc és a count szám adja
meg, mikor lesz meghívva a függvény. A maszk a következő jelentéssel bíró
karaktereket tartalmazhatja:

• "c": A hurok minden alkalommal meg lesz hívva, amikor a Lua meghív egy
függvényt;

• "r": A hurok minden alkalommal meg lesz hívva, amikor a Lua visszatér egy
függvényből;

• "l": A hurok minden alkalommal meg lesz hívva, amikor a Lua egy újabb sor
feldolgozásába kezd.

Nullától különböző count érték esetén a hurok minden count végrehajtott művelet
után meg lesz hívva.

Ha argumentumok nélkül van meghívva, a debug.sethook kikapcsolja a hurkot.

Amikor a hurok meg lesz hívva, az első paramétere egy karakterlánc, ami megadja,
mi váltotta ki az eseményt: "call", "return" (vagy "tail return"), "line", valamint
"count". A sor események esetén a hurok az új sor sorszámát kapja meg második
paraméterként. A hurkon belül a getinfo 2-es szinten történő hívásával a jelenleg
futó függvényről kérhető le bővebb információ (a 0. szint a getinfo függvény, az 1. a
hurok függvény), kivéve, ha az esemény "tail return". Ebben az esetben a Lua
csak szimulálja a visszatérést, és a getinfo érvénytelen adatokkal fog visszatérni.

debug.setlocal ([thread,] level, local, value)

A függvény a verem level szintjén lévő függvény local indexű változójának a value
értéket adja. A függvény visszatérési értéke nil, ha a megadott indexen nincs lokális
változó, és hibát ér el abban az esetben, ha a level a tartmányon kívüli érték. (A
debug.getinfo függvénnyel ellenőrizhető, hogy a szint érvényes -e.) Egyéb esetben
a lokális változó nevével tér vissza.

debug.setmetatable (object, table)

A megadott object objektum metatömbjét cseréli le a table tömbre (ami nil is lehet).

debug.setupvalue (func, up, value)

A függvény a megadott func függvény up indexen lévő felsőértékének a value értéket
adja. A függvény visszatérési értke nil, ha a megadott indexen nincs felsőérték.
Egyéb esetben a felsőérték nevével tér vissza.

debug.traceback ([thread,] [message])

Visszatérési értéke egy karakterlánc, ami hívó verem visszavezetése. Az
opcionális message karakterlánc a visszavezetés elejére lesz fűzve. A függvény főleg
az xpcall függvény esetén van használatban, hogy jobb hibaüzeneteket lehessen
előállítani.

6 - Lua feldolgozó (stand-alone)
Annak ellenére, hogy a Lua egy kiterjeszett nyelvként lett létrehozva, amelyet a C
programba ágyazva lehet használni, gyakran használják egyedülálló nyelvként is. Az
alap csomagban szerepel egy feldolgozó, melynek a neve egyszerűen csak lua. Ez
tartalmazza az alapértelmezett függvénykönyvtárakat, beleértve a hibakeresőt is. A
használata a következő:

 lua [options] [script [args]]

Az opciók a következők lehetnek:

• -e stat: végrehajtja a stat kifejezést;
• -l mod: "betölti" a mod modult;
• -i: a script futtatása után interaktív módba vált;
• -v: kiírja a verzió információkat;
• --: kikapcsolja az opciók kezelését;
• -: az stdin-t fájlként hajtja végre, és kikapcsolja az opciók kezelését.

Az opciók kezelés után a lua futtatja a megadott scriptet, a megadott args
karakterláncokat pedig argumentumként társítja hozzá. Ha argumentumok nélkül van
meghívva, a lua viselkedése ugyanaz, mint a lua -v -i esetén, amikor az
alapértelmezett bemenet (stdin) egy terminál, egyéb esetben úgy, mint a lua - .

Bármilyen argumentum futtatása előtt, a feldolgozó ellenőrzi a LUA_INIT környezeti
változót. Ha a formátuma @filename, akkor a lua végrehajtja a fájlt. Egyébként a lua
az ott megadott karakterláncot hajtja végre.

Minden opció sorrendben lesz kezelve, kivéve a -i. Például a következő indítás:

 $ lua -e'a=1' -e 'print(a)' script.lua

a értékét 1-re állítja, majd kiírja az a értékét (ami '1'), végül argumentumok nélkül
futtatja a script.lua fájlt. (Itt a $ jel a parancsértelmező készenléti jele. Ez
rendszerenként eltérő lehet.)

A script végrehajtása előtt a lua a parancssor összes argumentumát egy arg nevű
globális tömbbe gyűjti össze. A script neve a 0 indexen van tárolva, a script neve
után első argumentum az 1 indexen, és így tovább. A script neve előtti
argumentumok (tehát, a feldolgozó neve és az opciók után, de a script neve előtt),
negatív indexeket kapnak. Így a következő hívás esetén:

 $ lua -la b.lua t1 t2

a feldolgozó futtatja az a.lua fájlt, és létrehoz egy tömböt

 arg = { [-2] = "lua", [-1] = "-la",
 [0] = "b.lua",
 [1] = "t1", [2] = "t2" }

és végül futtatja a b.lua fájlt. A script az arg[1], arg[2], ˇˇˇ argumentumokkal lesz
meghívva; ezek az argumentumok elérhetőek a scriptből is a vararg kifejezés '...'
használatával.

Interaktív módban, ha egy félkész állítás kerül bevitelre, a feldolgozó vár annak
befejezésére, egy új készenléti jel megjelenítésével.

Ha a _PROMPT globális változó tartalmaz egy karakterláncot, az az érték lesz a
készenléti jel. Hasonlóan, ha a _PROMPT2 tartalmaz karakterláncot, annak értéke lesz
a másodlagos készenléti jel (befejezetlen állítások esetén lesz megjelenítve). Tehát
mindkét készenléti jel megváltoztatható közvetlenül a parancssorból is, például:

 $ lua -e"_PROMPT='myprompt> '" -i

(a külső idézőjelek a parancsétrelmező számára vannak, a belső pár pedig a Lua
számára), vagy a Lua programból, a _PROMPT változónak történő értékadással. Ne
feledjük el használni a -i kapcsolót, hogy interaktív módba lépjünk, ellenkező
esetben a program csak 'csendben' véget érne, közvetlenül a _PROMPT változónak
történő értékadás után.

Unix rendszereken a Lua beállítható, mint script-feldolgozó, mivel az nem veszi
figyelembe az első sort, ha az # karakterrel kezdődik. Így a Lua scriptek
végrehajtható programokká alakíthatóak át a chmod +x paranccsal, és a #!
formulával:

 #!/usr/local/bin/lua

(természetesen a Lua feldolgozója gépenként eltérő lehet. Ha a lua a PATH útvonalon
van, akkor a

 #!/usr/bin/env lua

egy sokkal jobb, átvihetőbb megoldás.)

7 - Eltérések az előző verzióhoz képest
A következőkben szerepelnek az eltérések, amelyeket a Lua 5.0 és Lua 5.1 közötti
átalakítás során figyelembe kell venni. A legtöbb eltérés (inkompabilitás)
megelőzhető, ha a Lua a megfelelő opciókkal van lefordítva (lásd a luaconf.h fájlt).
Mindezek ellenére, ezek az opciók a Lua következő verziójában már nem fognak
szerepelni.

7.1 - Változtatások a nyelvben

• A vararg rendszer az arg pszeudo-argumentumra lett megváltoztatva, ami egy
tömb, ami az extra argumentumokat tartalmazza. (LUA_COMPAT_VARARG
kapcsoló a luaconf.h fájlban.)

• Egy finomítás lépett életbe a for és repeat állítások implicit változóinak
láthatóságánál.

• A hosszú karakterláncok / hosszá megjegyzések szintakszisa ([[string]])
nem engedélyezi az egymásba ágyazást. Az új szintakszis használható
helyette ([=[string]=]) (LUA_COMPAT_LSTR kapcsoló a luaconf.h fájlban.)

7.2 - Változtatások a függvénykönyvtárakban

• A string.gfind függvény át lett nevezve, új neve string.gmatch.
(LUA_COMPAT_GFIND kapcsoló)

• Ha a string.gsub harmadik argumentuma függvény, és annak visszatérési
értéke nil vagy false, a cserekifejezés az egész egyezés, az üres
karakterlánccal ellentétben.

• A table.setn el lett távolítva. A table.getn függvény helyett mostantól az új
hossz operátor (#) használandó. (LUA_COMPAT_GETN kapcsoló)

• A loadlib függvény át lett nevezve, új neve package.loadlib.
(LUA_COMPAT_LOADLIB kapcsoló)

• A math.mod függvény át lett nevezve, új neve math.fmod. (LUA_COMPAT_MOD
kapcsoló)

• A table.foreach és table.foreachi függvények el lettek távolítva. Helyette
for ciklus használandó pairs és ipairs kifejezésekkel.

• Nagy változások léptek életbe a require függvényben az új modulrendszer
miatt. Annak ellenére, hogy a működése hasonló, és kompatibilis a régivel,
a require az útvonalat a package.path változóból kéri le a LUA_PATH helyett.

• A collectgarbage függvény különböző argumentumokat kapott. A gcinfo
függvény el lett távolítva, helyette a collectgarbage("count") használandó.

7.3 - Változtatások az API-ban

• A luaopen_* függvények (függvénykönyvtárak megnyitása) nem hívhatóak
meg közvetlenül, mint egy sima C függvény. A Lua-n keresztül kell meghívni,
mint egy Lua függvényt.

• A lua_open le lett cserélve a lua_newstate függvényre, hogy a felhasználó
beállíthasson egy memória-lefoglaló függvényt. Az alapértelmezett
függvénykönyvtár luaL_newstate függvényének használatával egy állapot
készíthető, amely az alapértelmezett lefoglaló függvény lesz (ami a realloc
függvényen alapszik).

• A luaL_getn és luaL_setn függvények (a segédkönyvtárban) el lettek
távolítva. A luaL_getn helyett a lua_objlen használható, a luaL_setn helyett
pedig semmi, véglegesen el lett távolítva.

• A luaL_openlib le lett cserélve a luaL_register függvényre.
• A luaL_checkudata függvény mostantól hibát dob, ha a megadott érték nem az

elvárt típusú userdata típus. (5.0-ban a visszatérési értéke NULL volt.)

8 - A Lua teljes szintakszisa

A következőkben a Lua teljes szintakszisa szerepel, kiterjesztett BNF formátumban.
(Ez nem írja le az operátorok precedenciáját.)

 chunk ::= {stat [`;´]} [laststat [`;´]]

 block ::= chunk

 stat ::= varlist1 `=´ explist1 |

 functioncall |

 do block end |

 while exp do block end |

 repeat block until exp |

 if exp then block {elseif exp then block} [else block] end |

 for Name `=´ exp `,´ exp [`,´ exp] do block end |

 for namelist in explist1 do block end |

 function funcname funcbody |

 local function Name funcbody |

 local namelist [`=´ explist1]

 laststat ::= return [explist1] | break

 funcname ::= Name {`.´ Name} [`:´ Name]

 varlist1 ::= var {`,´ var}

 var ::= Name | prefixexp `[´ exp `]´ | prefixexp `.´ Name

 namelist ::= Name {`,´ Name}

 explist1 ::= {exp `,´} exp

 exp ::= nil | false | true | Number | String | `...´ | function |

 prefixexp | tableconstructor | exp binop exp | unop exp

 prefixexp ::= var | functioncall | `(´ exp `)´

 functioncall ::= prefixexp args | prefixexp `:´ Name args

 args ::= `(´ [explist1] `)´ | tableconstructor | String

 function ::= function funcbody

 funcbody ::= `(´ [parlist1] `)´ block end

 parlist1 ::= namelist [`,´ `...´] | `...´

 tableconstructor ::= `{´ [fieldlist] `}´

 fieldlist ::= field {fieldsep field} [fieldsep]

 field ::= `[´ exp `]´ `=´ exp | Name `=´ exp | exp

 fieldsep ::= `,´ | `;´

 binop ::= `+´ | `-´ | `*´ | `/´ | `^´ | `%´ | `..´ |

 `<´ | `<=´ | `>´ | `>=´ | `==´ | `~=´ |

 and | or

 unop ::= `-´ | not | `#´

Utolsó módosítás: Mon Jun 5 17:05:27 BRT 2006
Fordítás dátuma: Sat Oct 25 10:13:20 CET 2008
Fordítási megjegyzések: néhány kifejezés csak nehezen ültethető át magyar nyelvre. Lehet hogy van
rá szabványosított kifejezés, én azonban ilyenről - a fordítás befejezésekor - nem tudtam. A könnyebb
megérthetőség érdekében most néhány kifejezés fel lesz tüntetve az eredeti angol megfelelőjével:

eljáráskönyvtár library

értékkiemelés captures

feldolgozó interpreter
felső érték upvalue

felsorolás enum, enumeration

függvénykönyvtár lásd eljáráskönyvtár
hibát ér el raises an error
hurok hook

kliens host
rendezett tömb array

szemétgyűjtő garbage collector

tömb
table (bár a 'table' lehet hash is. lásd
rendezett tömb)

véghívás tail call
zárvány closure

Hibás fordítás, elírás és ötletek jelenthetőek az e-mail címemen: ejjeliorjarat@gmail.com

